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EECS551 – Deterministic Signal Processing
Project Paper
Wavelet-Based Image Processing Considerations

Abstract
Wavelet-based image compression topics, both established and recent, are

investigated, drawing on research papers, books and a technical article. Software

for research and commercial applications is briefly reviewed.

Introduction
Focus is put on recent research in wavelet-based image compression. The rate-

distortion tradeoff is a central thread. Lagrangian optimization and dynamic

programming are discussed as efficient optimizations of this tradeoff.

Other topics include encoder structure, model complexity tradeoff, motivation for

transform coding, extension of the wavelet transform to the 2-D case, reasons

wavelets provide a good representation of typical images, choice of wavelet

bases, progressive coding, choice of a wavelet packet decomposition tree,

relation to traditional coding theory and quantization.

The applied topics of standards and encoder / decoder tradeoffs are discussed.

Finally, two software tools (one for research and the other for commercial use)

implementing wavelet-based image compression are investigated.
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Theory

General Encoder Structure
Figure 11 shows the general structure of an image compression system. The

transform block moves image data to a domain more appropriate to compression

than the spatial domain. In the quantize block significant transform coefficients

are selected and represented with a specific number of bits. The entropy code

block uses information theoretic principles to output a high entropy / low

redundancy representation of the image.

Transform Quantize Entropy
Code

• Figure 1: General Encoder Structure

This paper focuses primarily on the transform, but significant issues regarding

quantization are also discussed. Entropy coding is not investigated.

Rate-Distortion Tradeoff
Compressing an image with any parametric technique (e.g. JPEG/DCT, wavelets

or wavelet packets) is an optimization problem balancing rate against distortion

(this is the rate-distortion, or R-D tradeoff). Rate is generally taken as bits per

pixel (bpp). Distortion, often taken as mean squared error (MSE), is more elusive.

Although MSE does not necessarily correlate with perceptual quality, it is often

the best objective measure of distortion. However, especially given a proper

model (see “Model Complexity Tradeoff” below), MSE and subjective distortion

do correlate well [Ort98, 24].

                                                  
1 Adapted from [Bur98]
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Referring to Figure 22, a number of operating points (points representing a

specific R-D tradeoff) are generated by various choices of compression system

parameters. None of these can perform better than some theoretical optimum

bound for a particular image. The operating points form a convex hull, on which

all points may or may not be achievable in practice (see “Rate-Distortion

Optimization” below).
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• Figure 2: Operating Points and R-D Tradeoff

Model Complexity Tradeoff
Before an image is coded, an image model must be chosen. Early image coding

techniques often considered frequency subbands independent, and thus were

unable to exploit a common type of redundancy found in many image classes

[Ort98, 26]. This is similar in concept to the Fourier transform, which moves a

signal from the time (or spatial) domain to the frequency domain. Often, mixed

                                                  
2 adapted from [Ort98, 28]
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time-frequency or time-scale (wavelet) transforms better capture the underlying

structure of image data, forming a basis for more efficient compression in the R-D

sense.

The tradeoff for a more robust model is increased computational complexity

(consider the time difference between performing an FFT and a wavelet or time-

frequency transform in MatLab).

There are many model choices and development techniques. For example,

complex (and hence more capable) models may be realized by combining

simpler models [Ort98, 28]. A major class of models comes from transform

coding, of which wavelet decompositions are instances.

Transform Coding Motivation
Transform coding is representing the signal to be compressed in an alternate

domain (e.g. space-scale instead of Cartesian space for an image). R-D

optimization is then performed in the transform domain. By design, this transform

should have two properties for the class of signals to be compressed. First, the

transform should concentrate the majority of the signal energy into a small

number of coefficients (thus having minimal distortion for low rates). Second, the

transform should result in decorrelated coefficients. This allows a simple scalar

quantizer to have performance near that of a more complicated vector quantizer

[Ort98, 29].
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Generalization of Wavelets to 2-D Data
Figure 3 shows a 3-level instance of a 2-D wavelet decomposition proposed by

Mallat, with higher decomposition indices representing lower scale features

[Ant92]. The 2-D scaling and wavelet functions are given by:

φ(x, y) = φ(x) φ(y) ψ H(x, y) = φ(x) ψ (y)

ψ V(x, y) = ψ (x) φ(y) ψ D(x, y) = ψ (x) ψ (y)

D1

H1

V1

D2

D3
H2

V2

V3

H3A3

• Figure 3: 2-D Wavelet Coefficient Organization

Wavelet / Image Affinity
Wavelet decompositions are efficient for a large number of common image

properties such as gentle background gradients (scale localization) and edges

(spatial localization) [Ort98, 30].

For many images, energy is concentrated in the lower scale subimages. Also,

there is normally redundancy between subimages (both within a scale and

between scales) which can be exploited by algorithms such as those using

Sharpiro’s zerotrees [Mal98].
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More flexibility and more efficient decompositions can often be found by

generalizing to a wavelet packet decomposition optimized for a particular image

or image segment [Ort98, 30]. This is the major topic of [Ram93] (see “Choice of

Wavelet Packet Decomposition Basis” below).

Choice of Wavelet Decomposition Basis
Several properties are desired in a wavelet basis for images. Some of the most

important are [Ant92]:

n smooth reconstruction filter (since smooth areas dominate most images)

n short filters (for efficient computation)

n linear phase filters (which lead to simpler cascade structures)

Since the only symmetric exact reconstruction (orthonormal) filters come from the

Haar basis, a biorthogonal system with linear phase is preferred.

Expanding on smoothness, Antonini et. al. [Ant92] found that both vanishing

moments of the decomposition wavelet and regularity of the reconstruction

wavelet are important in improving both subjective and objective compression

measures. In many cases, increasing the reconstruction regularity, even at great

expense in decomposition vanishing moments, improves results.

Sufficient vanishing moments in the decomposition wavelets and regularity of the

reconstruction wavelets used with vector quantization eliminate the blocking

effects of using vector quantization in the spatial domain. Additionally, such

wavelets do not have undesirable ringing effects [Ant92].
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Progressive Stream Structure
Often, images are encoded for the primary purpose of efficient, on demand

transmission over a data network. When the time to receive and decode an

image stream is significant (more than a fraction of a second to more than a few

seconds depending on the source consulted and the user’s expectations) a

progressive bitstream structure may be preferred. This allows the image to be

visually rendered as it is received, normally with low scale or low frequency

features first, greatly mitigating the perceived channel delay. Normally there is a

cost in aggregate rate for arranging the data this way, but it often small (or

insignificant) compared to the perceptual performance gains. This is precisely the

rationale behind progressive JPEG encoding.

Maldonado-Bascón et al. [Mal98] have developed and implemented a

progressive bitstream method for wavelet-based image compression. The

authors point out that the drawback of their method is that it does not take

advantage of the correlation between the subimages (e.g. zerotrees). The

method begins by sending mean values for the subimages and then sends the

largest deviations (in the image domain MSE sense), working its way down to the

smaller deviations. For most images, this is roughly equivalent to a low to high

scale transmission order. For two standard test images (Lincoln and Lena), at

rates from 0.1 to 0.5 bpp, their algorithm performed about 1.0 to 1.5 dB worse in

PSNR than Said and Pearlman’s algorithm, which they recognize as the best

published wavelet algorithm. This can be taken as an approximation of the

distortion cost for structuring a stream progressively.
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Rate-Distortion Optimization
The R-D optimization problem is choosing the optimal (in some sense) point in

the operating space for a particular coder (see Figure 2). One technique for this is

Lagrangian optimization, which is fast but cannot find the optimal point in some

situations. Another R-D optimization technique is dynamic programming, which is

much more computationally intensive, but more flexible than Lagrangian

optimization.

Lagrangian Optimization

Lagrangian optimization reduces R-D optimization to specifying a single

parameter, λ, the Lagrange multiplier, which captures the importance of low rate

compared to the importance of low distortion for a particular application.

Lagrangian optimization is illustrated in Figure 4. It can be envisioned with a

series of parallel lines of slope λ in the R-D plane, each representing equal cost.

The optimal solution (minimal cost) occurs where a line is tangent to the convex

hull of operating points. For a given λ, the optimum quantization for each tile in a

time-scale plane may be found this way. [Ort98, 38]
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• Figure 4: Lagrangian Optimization

Dynamic Programming

Dynamic programming transverses the operating points in a tree structure. It is

exhaustive and can therefore find better solutions than Lagrangian optimization

under certain constraints. During transversal, if to solutions have the same rate

but different distortion, the path with the higher distortion is pruned [Ort98, 39].3

Requiring the same rate implies that there are a small number of possible rates

(e.g. allocation of 20 bits to various subbands). This is consistent with using

dynamic programming for sparse spaces and Lagrangian optimization for dense

spaces, as is suggested by the example in the following paragraph.

                                                  
3 Since we expect the low order coefficients to be the most significant, we would not expect allocating the same
number of bits to higher order of coefficients to change the relative distortion of the two paths. This is consistent
with the nesting of subspaces in the wavelet transform.
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Consider Figure 54, representing the allocation of a fixed aggregate number of

bits (maximum allowable rate) to various time-scale channels of an image

decomposition in which minimum distortion is desired. Lagrangian optimization

can only find points on the convex hull and therefore will select operating point A,

while dynamic programming will find B, the best tradeoff for the given operating

points and rate limitation. In many applications, operating points are densely

packed, essentially eliminating the benefits of dynamic programming [Ort98, 41].
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• Figure 5: Dynamic Programming

Choice of Wavelet Packet Decomposition Basis
Certain images, such as those with high scale stationary components, are not

well localized and decorrelated by the standard logarithmic wavelet

decomposition tree. In such cases, adaptive methods, such as selecting the

optimal wavelet packet decomposition tree, may yield better results. The most

efficient wavelet packet tree in the Lagrangian sense (which is a function of the

                                                  
4 Adapted from [Ort98, 42]
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Lagrangian parameter λ) can be found by starting with a complete wavelet packet

decomposition tree and pruning nodes from the bottom. A pair of nodes is pruned

if its parent node (representing a superspace of each child) can be encoded to

achieve a better R-D tradeoff [Ram93].

Mismatch with Traditional Theory
Image data has much less stringent fidelity requirements than ASCII text and

executable code in which one mistransmitted bit can potentially corrupt the entire

message. [Ort98, 45] Thus, with proper encoder/decoder design, performance

gains can be achieved by trading reliability for throughput (e.g. TCP vs. UDP).

Also, since all bits in an image stream are not equally important (the tree structure

is more important than the low order coefficients which are generally more

important than the high order coefficients) a layered approach [Ort98, 46] in which

metadata (e.g. tree structure) is sent on a more reliable transport than coefficient

data can also increase performance.

Choosing a Quantization Scheme
Antonini et. al. [Ant92] investigated vector quantization. It can be more efficient

than scalar quantization5, and many of its common problems (e.g. not being

based on psychovisual characteristics and having high computational cost) are

mitigated by the wavelet transform.

Przelaskowski [Prz98] found that uniform scalar quantizers, which are typically

near optimal for high bit rate applications, are inefficient for low bit rate

applications. He investigated several quantization schemes and found that using

                                                  
5 The paper used intra-subimage vector codebooks. Given that correlation between subimages (both within and
between levels) is common, it would be interesting to investigate whether a vector quantizer could exploit this
correlation.
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locally optimized quantizers for each subimage improved performance by about

1.0 dB PSNR over uniform threshold quantization for various 8-bit medical and

standard test images at rates of 0.3 to 0.7 bpp.

Applications

Standards-Based Coding
To encourage commercially viable implementations of a coding method, a

“bitstream syntax” is chosen so that encoders and decoders can be designed and

optimized separately and be guaranteed to interoperate. This is the basis for the

success of such standards as JPEG and MPEG [Ort98, 31].

Encoder / Decoder Tradeoff
There are several reasons to design bitstreams that prefer flexible (and hence

more complex) encoders and simple decoders. A flexible encoder can take

advantage of advances in theory without requiring replacement of existing

decoders. Also, properly designed, a flexible encoder will have better

performance on signals not well matched to the underlying model when

compared to a simpler encoder [Ort98, 31].

Also, increasing the cost at the encoder often yields superior returns in decreased

cost and simpler decoders, much as the pilot of an FM radio signal is wasteful of

energy, but allows receivers to be built with great reliability and low cost. Ortega

[Ort98, 34] summarizes this tradeoff well:

Complex algorithms can be justified in scenarios where encoding is performed just once but
decoding is done many times.
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Results and Discussion
Two software programs were used to investigate wavelet coding of images.

MatLab’s Wavelet toolbox provides building blocks for theoretical investigation,

while Summus’ 4U2C provides a commercial application for image compression.

MatLab’s Wavelet Toolbox
MatLab’s Wavelet Toolbox allows viewing the results of wavelet and wavelet

packet compression on images with various wavelets at user-selectable scales

and can generate transform data. However, it does not provide a quantitative rate

measure such as file size or bpp for the wavelet transform. It would be an

interesting extension of the existing routines to write MatLab code to generate R-

D graphs for a variety of wavelets, scales and thresholding schemes.

Summus’ 4U2C
Summus’ 4U2C wavelet-based image compression software allows interactive

image compression by letting the user set compression ratio, quality factor

(similar to standard JPEG encoders) or file size. Since it is a consumer product,

details such as the bases and decomposition trees being used are not available.

Subjectively, the algorithm provided much better results than JPEG, especially at

medium (about 1:40 with a highly detailed image, 24-bit image) to low bitrates

(below 1:200). The encoding cost seems significantly greater than JPEG, though,

with compression taking one to two seconds on hardware which can perform

JPEG compression in a small fraction of a second. The relicing of low bitrate

JPEG was replaced by a more acceptable loss of fine texture (e.g. bricks on a

wall), but at a significantly lower bitrate than JPEG. The wavelet compression did
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an excellent job of maintaining overall color and tight outlines even at low bitrates

(lower than 1:200 on a highly detailed image). At even lower bitrates (lower than

1:500, allocating only several hundred bytes to estimate a detailed image), the

general forms were discernable and the overall colors of the image were well

preserved.

Consistent with the low bitrate subjective results, using the demo images and

browser plugins from the Summus Website (http://www.summus.com/), the

progressive display feature provides much clearer results at lower scan size than

progressive JPEG.

Conclusion
Wavelet-base image compression theory has rapidly progressed in the last

several years. With the basic theory in place, software tools have become

available which aid in further research and consumer applications of the

technology. For example, the JPEG 2000 draft standard6 incorporates wavelet

compression technology. On the research side, MatLab’s Wavelet Toolbox

provides many building blocks for designing and testing wavelet image

compression systems.

                                                  
6 Details and current revisions are only available to standards committee members, so a more thorough of the
standard could not be provided in this paper.
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