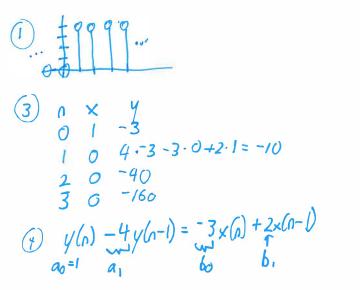

	Aunda
Name	anowers

EE-3221-11 – Dr. Durant – Quiz 4 Winter 2017-'18, Week 4

- 1. (2 point) Draw a stem plot sketch of $x(n) = 3\delta(n + 2)$ for a reasonable range of n values.
- (3 points) Indicate whether each of the following systems is linear, time-invariant, and causal.
 You *do not* need to show your work for this problem.

	$y_1(n) = 3x(n) + 2x(n-4)$	$y_2(n) = ln(x(n+1))$	$y_3(n) = nx^2(n-2)$
Linear?	+	$- \ln(a+b) \neq \ln(a) + \ln(b)$	$-(a+b)^2 \neq a^2+b^2$
Time-invariant?	+	+	- 1.
Causal?	+	- n+l looks to Fotur	-+

- (3 points) Calculate the first 4 samples of the unit step response of y(n) =
 (2/3)y(n-1) + 2 x(n) x(n-1). Recall that the impulse response is y(n) when x(n) = u(n).
- (2 points) *Re-write* the equation in standard form and then *indicate* the name of each coefficient (a₁, etc.).



Name	answers

- 1. (2 point) Draw a stem plot sketch of x(n) = 4u(n-1) for a reasonable range of n values.
- (3 points) Indicate whether each of the following systems is linear, time-invariant, and causal.
 You *do not* need to show your work for this problem.

	$y_1(n) = x(n-3) + 2x(n-4)$	$y_2(n) = nx^2(n+2)$	$y_3(n) = cos(x(n-1))$
Linear?	+	- due to square	$-\cos(a+b)\neq\cos(a)$
Time-invariant?	-+	- due to Mill n'	+
Causal?	· · · ·	$-due to n^{+2}$	+

- 3 χ . (3 points) **Calculate** the first 4 samples of the unit **impulse** response of y(n) = 4y(n-1) 3x(n) + 2x(n-1). Recall that the impulse response is y(n) when x(n) = $\delta(n)$.
- 4.2. (2 points) *Re-write* the equation in standard form and then *indicate* the name of each coefficient (a₁, etc.).

