Name Amine

EE-3220-21 – Dr. Durant – Quiz 2 Winter 2013-'14, Week 2

 (3 points) Indicate whether each of the following systems is linear, time-invariant, and causal. You *do not* need to show your work for this problem.

	$y_1(n) = x(n-2)$	$y_2(n) = 2 n x(n)$	$y_3(n) = x^2(n+1)$
Linear?	yes	ypa	mo
Time-invariant?	Nes	мо	yes
Causal?	Nges	Mes	mo

- 2. (2 points) Write the non-0 portion of the sequence resulting from $x(n) = -\left(\frac{1}{2}\right)^n (u(n+2)-u(n-2))$. Recall that u(n) is the unit step that becomes 1 when the argument reaches 0. Clearly indicate the *n=0* position in your sequence.
- (2 points) Express your sequence above as a weighted sum of shifted unit samples or deltas (δ(·)).
- (1 point) Let the impulse response of a system be h(n) = [h(0) h(1)] = [3 -5]. Explain why this system is causal.
- 5. (2 points) Calculate the convolution $y(n) = x(n)^*h(n)$. Show your work (intermediate products; you are not required to show the formula for the convolution sum). Indicate where n=0.

(a) $v(n+2) - v(n-2) = \begin{bmatrix} 1 & 2 \le n \le 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ $x(n) = \begin{bmatrix} 4 & 2 & 1 & -\frac{1}{2} \end{bmatrix}$ $x(n) = \begin{bmatrix} 4 & 2 & 1 & -\frac{1}{2} \end{bmatrix}$ $x(n) = \begin{bmatrix} 4 & 8 & (n+2) + 28 & (n+1) + 8 & (n) + \frac{1}{2} & 8 & (n-1) \end{bmatrix}$ (3) $x(n) = \begin{bmatrix} 4 & 8 & (n+2) + 28 & (n+1) + 8 & (n) + \frac{1}{2} & 8 & (n-1) \end{bmatrix}$ (4) h(n) = 0 when n < 0. That is, there is no reporce before an input arrives. (5) $x(n] xh(0) = 12 - 6 - 3 - 1\frac{1}{2}$ $(6) = x(n] xh(0) = \frac{12 - 6 - 3 - 1\frac{1}{2}}{-12 + 10} = \frac{18 & 000000}{12 - 6 - 3 - 1\frac{1}{2}} = \frac{18 & 0000000}{10 + 5 + 2\frac{1}{2}} = \frac{18 & 000000}{10 + 5 + 2\frac{1}{2}} = \frac{18 & 00000}{10 + 5 + 2\frac{1}{2}} = \frac{18 & 0000}{10 + 5 + 2\frac{1}{2}} = \frac{18 & 0000}{$

Name auseoas

starts@-1 starts @ 3

EE-3220-41 – Dr. Durant – Quiz 2 Winter 2013-'14, Week 2

 (3 points) Indicate whether each of the following systems is linear, time-invariant, and causal. You *do not* need to show your work for this problem.

	$y_1(n) = x(n+2)$	$y_2(n) = x(n)+2$	$y_3(n) = x^2(n)$
Linear?	yes	mo	mo
Time-invariant?	yes	yes	nges
Causal?	MO	Nes	yes

- 2. (2 points) Write the non-0 portion of the sequence resulting from $x(n) = \left(\frac{-1}{2}\right)^n (u(n+1)-u(n-3))$. Recall that u(n) is the unit step that becomes 1 when the argument reaches 0. Clearly indicate the n=0 position in your sequence
- (2 points) Express your sequence above as a weighted sum of shifted unit samples or deltas (δ(·)).
- 4. (1 point) Let the impulse response of a system be h(n) = [h(0) h(1)] = [5 -3]. Explain why this system is causal.
- 5. (2 points) Calculate the convolution $x(n)^*h(n)$. Show your work (intermediate products; you may but are not required to show the formula for the convolution sum).

	u (n+1) - u x (n) = E -	Z 1 n=0	-1-2	4]					lusive				
(3) (4)	x(n) = -2 Because	б(n+i) h(n)) + S(=0 f	(n)-1/2	δ(n-	$(7) + \frac{1}{4}$	S(n-2) lere is	NON	l <i>op</i> ense	before	He is	yout an	uoe.)
(5)	×(n) ×h(d) ×(n) ×h(l) Y	-10	5		14-1-2	-mly							