Milwaukee School of Engineering

Electrical Engineering and Computer Science Department

EE-3221 - Final Exam - Dr. Durant

Monday 21 February 2022

May use textbook (PDF or printed), $81^{\prime \prime} \times 11^{\prime \prime}$ note sheet, and calculator.

Good luck!

Name:

Page 2:	(23 points)
Page 3:	(25 points)
Page 4:	(16 points)
Page 5:	(21 points)
Page 6:	(15 points)

1. (10 points) Illustrate the purpose of the reconstruction filter in a DSP system by sketching its input and output for the samples $y[n]=\left[\begin{array}{lll}3 & -1 & 5\end{array}\right]$.
2. (8 points) An analog signal with energy in the frequency range $0-20 \mathrm{kHz}$ undergoes the following operations in order: 1) lowpass filtering at $10 \mathrm{kHz}, 2$) sampling at 16 kHz . Aliasing occurs at the higher frequencies. What range of frequencies are not aliased and thus could be recovered in a lowpass version of the signal with an even lower cutoff frequency than the original 10 kHz ?
3. (5 points) What is the period of $x(n)=\cos (9 \pi n / 25)$? Show your work.
(i)

(2) Alas down to $16-10=6 \mathrm{kta} \rightarrow 0 \rightarrow 6 \mathrm{kHz}$ Equiv valuably: $N y=\frac{16}{2}=8 \mathrm{kttz}$, Alias $8 \rightarrow 10 \Rightarrow 8 \rightarrow 65$
(-2) $0-8$ wiguplogic, but some error
(3) $\Omega=\frac{9 \pi}{25}$ $N_{0} \Omega=2 \pi k$

$$
\frac{2 \pi}{25} N_{0}=2 \pi k
$$

$9 \mathrm{Nc}=50 \mathrm{k}$, incedciciole

$$
\therefore N_{0}=50
$$

4. (10 points) Calculate the convolution [$\underline{3}-64] *[\underline{7} 2]$ directly using the convolution formula. Show your work.
5. (10 points) Recalculate the convolution using the DFT/IDFT method. It is suggested that you use the FFT that we learned in class (radix-2 decimation-in-time FFT).
6. (5 points) Discuss whether your convolution results are consistent with the area property.
$\begin{array}{llll}\text { (4) } & 21 & -42 & 2^{8}\end{array}$
$\left[\begin{array}{llll}-31 & -\frac{12}{26} & \frac{8}{16} & 8\end{array}\right]$

(6)

$$
\begin{aligned}
& A_{x}=\sum x=3-6+4=1 \\
& A_{h}=\sum h=7+2-9 \\
& \left.A_{y}=\sum_{y}=21-36+16+8=9\right\} \mathrm{J} \\
& A_{y}=A_{x} \cdot A_{n}=1.9=9
\end{aligned}
$$

/N
Yes, As by both
7. (6 points) For $N=2^{11}=2048$, calculate the number of multiplies needed for (a) directly calculating the DFT and (b) using the FFT algorithm we discussed in class.
8. (10 points) In the final lab, you implemented a $6^{\text {th }}$ order IIR filter with 3 notches. Many students ran into stability issues, especially if they used r values above about 0.993-0.996. Explain why the stability problems were much more significant on the FM4 real-time hardware than in MATLAB. (Hint: It's related to the precision of each platform, but you must be more specific.)
(7) $\mathrm{Canth}^{\text {th }}$ trivial mils.
(a) $N^{2}=\left(2^{11}\right)^{2}=2^{22} \sim 4$ million $]$ Ret io $=\frac{2048}{11} \sim 185 \times$
(b) $N \log _{2} N=2048 \cdot 11=\frac{2048}{22,528}$
 The zerd-pole notch approach is very sensitive to root position. , drifts of poke. untabbo if $|p| \geqslant 1$
(-4) in fo on bit county hot nut above detail

Given the difference equation $y[n]=-0.4 y[n-1]+0.32 y[n-2]+x[n]-1.5 x[n-1]+0.56 x[n-2]$
9. (6 points) Take the z-transform of both sides of the equation and solve for the transfer function $H(z)$. Show your work. (Note that *(n-1) does not appear in the expression
10. (10 points) Draw the pole-zero diagram for this system and (3)
(4)a. Explain why the system is stable.
(3)b. Comment specifically on how these roots will affect the magnitude response.
11. (5 points) What form will the impulse response take? Hint: The impulse response can be found by taking the inverse z-transform of $\mathrm{H}(\mathrm{z})$, which benefits from partial fractions. Finding the form means you do not need to determine the parameters, but just the general expression. (e.g., $A \cdot \sin (0.1 \pi n) u(n)$ vs. $3.224 \sin (0.1 \pi n) u(n))$.
(9) $Y(z)\left(1+0.4 z^{-1}-0.32 z^{-2}\right)=X(z)\left(1-1.5 z^{-1}+0.56 z^{-2}\right)$

$$
H(z)=\frac{\gamma(z)}{x(\tau)}=\frac{1-1.5 z^{-1}+0.56 z^{-2}}{1+0.4 z^{-1}-0.32 z^{-2}}=\frac{z^{2}-1.5 z+0.56}{\tau^{2}+0.4 z-0.32}
$$

(10) $H(z)=\frac{(z-0.8)(z-0.2)}{(z+0.8)(z-0.4)}$

(a) $p_{i}=\{-0.8,0.4\}, \forall i, p_{i} \mid<1$ (all response eberents decay)
(b) 2 nearby O_{S} decrease LF gain, pole (8) -0.8 increases HF sain. Very couple

(11) From $10 a,{ }^{4} p_{i}$

$$
h\left[n=\left(A(-0.8)^{n}+8 \cdot 0.4^{n}\right) u(n)\right.
$$

(-1) force $h[0]=0$ wt un-1)

Continuing the problem from the previous page...
12. (5 points) Determine the frequency response, $\mathrm{H}\left(e^{j \Omega}\right)$, of this system.
13. (10 points) Given that the sampling frequency is 16 kHz and assuming ideal sampling, find the steady state digital output, $y(n)$, given that the analog input is $x(t)=\cos \left(5600 \cdot 2 \pi \cdot t-60^{\circ}\right)$.
(12) $H\left(e^{j \Omega}\right)=H(B)_{2}=e^{\Omega}=\frac{e^{i^{2 \Omega}}-1.5 e^{j \Omega}+0.56}{e^{i^{2} \Omega}+0.4 e^{j \Omega}-0.32}$
(13) $\Omega=\frac{F}{f_{s}} \cdot 2 \pi=\frac{5600}{16000} \cdot 2 \pi=\frac{56 \pi}{80}=\frac{7 \pi}{10}$ (-2 if u/00ns)

$$
\begin{aligned}
& H(4) \frac{7 \pi}{10}=\cdots \cdot \frac{(-0.309-j 0.951)+(0.882-j 1.24)+0.56}{(-0.309-j 0.951)+(-0.275+0.324 i)-0.32}=\frac{1.133-j 2.165}{-0.864-j 0.627} \\
&=0.332+j(2265)=2.289<1.42^{R} \\
&(7.268)\left(81.7^{\circ}\right)
\end{aligned}
$$

$$
\begin{aligned}
& x[n]=\cos \left(\frac{7 \pi}{10} n-\frac{\pi}{3}\right) \\
& y[n]=2.289 \cos \left(\frac{7 \pi}{10^{n}}-60^{\circ}+81.7^{\circ}\right) \\
&=2.289 \cos \left(\frac{7 \pi}{10^{1}} n+21.7^{\circ}\right) \\
& w^{1} \\
& 2.199 0.370^{8 R} \\
& a
\end{aligned}
$$

