Name <u>Unsuvers</u>

EE3032 - Dr. Durant - Quiz 8 Fall 2017, Week 8

- 1. (3 points) Recall that the inverse Fourier transform is given by $x(t) = 1/(2\pi) \int X(\Omega) e^{-t} d\Omega$. State the formula for the (forward) Fourier transform. Hint: there are 2 differences between the forward and inverse Fourier transforms.
- 2. (4 points) x(t) has Fourier transform $X(\Omega)$. y(t) = 2x(t-3) + 5. State $Y(\Omega)$ in terms of $X(\Omega)$.
- 3. (3 points) In your own words, explain what the time-frequency duality of the Fourier transform allows you to do. (You do not need details such as where the 2π factor goes. Note also that *duality* is different than the time-frequency *inverse* relationship. Partial credit will be given if you describe the *inverse* relationship instead of the *duality* relationship.

- 2) Apply linearity twice (including ocaling) 7 time delay

 Y(\(\D\))= 2e^{-3j\D}X(\D\) + \(\D\T) = \(\D\)

 1 \(\T\)

 scale delay
 2× 3s
- 3) TF duality allows the interchange of the roles of $x(t) \neq X(\Omega)$ mi a FT pair to become $2\pi X(t) \Leftrightarrow x(-\Omega)$. (You do not need

 cap. small. ter their $2\pi = \Omega$ on the gaig.)

 80, we can solve an FT pair if we recogning either x(t) or $X(\Omega)$ as a known $T-\alpha$ F-domain function.

LPF!)

LPF!)

LOCAL

LPF!

Basic Properties of Fourier Transform

	Time Domain	Frequency Domain
Signals and constants	$x(t), y(t), z(t), \alpha, \beta$	$X(\Omega), Y(\Omega), Z(\Omega)$
Linearity	$\alpha x(t) + \beta y(t)$	$\alpha X(\Omega) + \beta Y(\Omega)$
Expansion/contraction in	$x(\alpha t), \alpha \neq 0$	$\frac{1}{ \alpha }X\left(\frac{\Omega}{\alpha}\right)$
time		
Reflection	<i>x</i> (- <i>t</i>)	$X(-\Omega)$
Parseval's energy relation	$E_x = \int_{-\infty}^{\infty} x(t) ^2 dt$	$E_{x} = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\Omega) ^{2} d\Omega$
Duality	X(t)	$2\pi x(-\Omega)$
Time differentiation	$\frac{d^n x(t)}{dt^n}, n \ge 1$, integer	$(j\Omega)^n X(\Omega)$
Frequency differentiation	-jtx(t)	$\frac{dX(\Omega)}{d\Omega}$
Integration	$\int_{-\infty}^{t} x(t')dt'$	$\frac{\chi(\Omega)}{j\Omega} + \pi \chi(0)\delta(\Omega)$
Time shifting	$x(t-\alpha)$	$e^{-j\alpha\Omega}X(\Omega)$
Frequency shifting	$e^{j\Omega g}x(t)$	$X(\Omega - \Omega_0)$
Modulation	$x(t)\cos(\Omega_c t)$	$0.5[X(\Omega - \Omega_c) + X(\Omega + \Omega_c)]$
Periodic signals	$x(t) = \sum_{k} X_{k} e^{ik \Omega_{0} t}$	$X(\Omega) = \sum_{k} 2\pi X_{k} \delta(\Omega - k\Omega_{0})$
Symmetry	x(t) real	$ X(\Omega) = X(-\Omega) $
•		$\angle X(\Omega) = -\angle X(-\Omega)$
Convolution in time	z(t) = [x * y](t)	$Z(\Omega) = X(\Omega)Y(\Omega)$
Windowing/Multiplication	x(t)y(t)	$\frac{1}{2\pi}[X*Y](\Omega)$
Cosine transform	x(t) even	$X(\Omega) = \int_{-\infty}^{\infty} x(t) \cos(\Omega t) dt$, real
Sine transform	x(t) odd	$X(\Omega) = -j \int_{-\infty}^{\infty} x(t) \sin(\Omega t) dt$. imaginary

Table 5.2 **Fourier Transform Pairs**

	Function of Time	Function of Ω
(1)	$\delta(t)$	1
(2)	$\delta(t-\tau)$	$e^{-j\Omega r}$
(3)	u(t)	$\frac{1}{j\Omega} + \pi \delta(\Omega)$
(4)	u(-t)	$\frac{-1}{j\Omega} + \pi\delta(\Omega)$
(5)	sign(t) = 2[u(t) - 0.5]	<u>2</u> jn
(6)	$A, -\infty < t < \infty$	$2\pi A\delta(\Omega)$
(7)	$Ae^{-at}u(t), a > 0$	$\frac{A}{j\Omega+a}$
(8)	$Ate^{-at}u(t), a > 0$	$\frac{A}{(j\Omega+a)^2}$
(9)	$e^{-a t }, \alpha > 0$	$\frac{2a}{a^2+\Omega^2}$
(10)	$\cos(\Omega_0 t), -\infty < t < \infty$	$\pi[\delta(\Omega-\Omega_0)+\delta(\Omega+\Omega_0)]$
(11)	$\sin(\Omega_0 t), -\infty < t < \infty$	$-j\pi[\delta(\Omega-\Omega_0)-\delta(\Omega+\Omega_0)]$
(12)	$p(t) = A[u(t+\tau) - u(t-\tau)], \tau > 0$	$2A\tau \frac{\sin(\Omega \tau)}{\Omega \tau}$
(13)	$\frac{\sin(\Omega_0 t)}{\pi t}$	$P(\Omega) = u(\Omega + \Omega_0) - u(\Omega - \Omega_0)$
(14)	$x(t)\cos(\Omega_0 t)$	$0.5[X(\Omega - \Omega_0) + X(\Omega + \Omega_0)]$