EE3032-4, Fall, 2019, Dr. Durant's Homework 5, Problem 5.7 with power calculation

additions

(a) Determine if the waveform has dc, even, or odd symmetry

First, we'll plot the waveform.

A

4;

t = linspace(-9,9,1000);

T0 = 6; % seconds

tBase = mod(t,T0); % period is 6, calculate corresponding time on [0,T0) to simplify building the function
f = zeros(size(t)); % correct for region [2,4], etc., where function is ©

A - (A/2)*tBase(tBase<2); % negative slope portion

f(tBase<2) =

f(tBase>4) = -2*A + (A/2)*tBase(tBase>4); % positive slope version, b+mx format
figure,plot(t,f),title( 'Given waveform f(t)"'),xlabel( 'Time (s)")
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35T
|
|
|

28T
|
|
|

167}

|
0.5 F |
| |
) I L |
8 10

10 -8B
Time (s)

We can see from the graph that there is a non-0 DC term (since the average isn't 0), that there is even symmetry (since we can flip the graph

from left to right about t=0), and that there is not odd symmetry.
(b) Obtain its cosine/sine Fourier series representation.

Since there is even symmetry, all the b (sine, odd) terms are 0.

To find the a terms, we apply the integrals in Table 5-3 on page 206.
a0 is the average value of the signal. The area is (1/2)*4*A = 2*A using the area of a triangle and the period is 6, so a0 = 2*A/6 = A/3

a1 can be simplified by taking the integral over the symmetric period [-3,3] and realizing that [0,2] contains area that is doubled on [-2,0] since

the product of even functions is even.

fo = 1/70;
wo = 2*pi*fe;
fprintf('The fundamental frequency w0 is %g radians/sec or %g Hz.\n',w0,f0)

The fundamental frequency w@ is 1.0472 radians/sec or 0.166667 Hz.
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The form will stay largely the same for n>1. The key difference is that the scaling factor in the antiderivative changes from 3/pi to 3/(n pi)
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The term in brackets, starting with n=1, is 3/2, 3/2, 0, 3/2, 3/2 0, .... It repeats with period 3 because of the 2\omega_0 term.

Let's skip ahead to part (e) to graphically confirm our answer is correct...

(e) Use MATLAB or MathScript to plot the waveform using a truncated Fourier series representation with
n_{max}=100.

nmax = 7;

n = @:nmax;

a = 3*A./((n.~2*pir2)) .* (1-cos(2*n*pi/3)); % for n>=1

a(n==0) = A/3; % a0 is an exception from the pattern

phase = (n'*w@) * t; % outer product, ' is transpose (row->column), rows of results are components; columns are time
components = a' .* cos(phase); % column vector expands across columns of right argument when using .*

figure

plot(t,components(1:min(10,nmax+1),:)), title('f(t) by series, just the first several components before adding')

f(t) by series, just the first several components before adding
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f_ser = sum(components); % sums the rows (components) into a single time series, doc sum to see how to sum other ways
figure
plot(t,f_ser), title(sprintf('f(t) by series, sum of %g components',length(n)))

fit) by series, sum of 8 components
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(c) Convert the representation to amplitude/phase format and plot the line spectra for the first five non-zero terms.
All the b's are 0, so all the phases must be either 0 or pi; this is true for any even signal. All the b's are non-negative, so the phase is simply 0.

Note: "amplitude" can be positive or negative (so phase can be restricuted to quadrant | and IV if desired), while "magnitude"” is never
negative, but uses a phase of pi to get the negative of a signal.

We omit the phase plot; it would just show 0 at each n.

figure

stem(n(1:6), a(1:6))

title('Part c: Fourier series amplitude spectrum')
xlabel('Harmonic number')
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(d) Convert the representation to complex exponential format and plot the line spectra for the first five non-zero
terms.

Here you would compute X = (a-jb)/2 for all n >= 1. X0 = a0. X_{-n} = X*_{n}. So, in this case, X are real and non-negative, yielding the same
plot as in part (c)

Additional assigned problems: Also, calculate the power using at least 2 methods: ...

Method 1: directly from f(t)

fp = f(t>=0 & t<T0); % extract 1 period
dt = diff(t(1:2));
Pd = (1/T@) * dt*sum(fp.”2); % Riemann sum for power integral

fprintf('Power using numeric integration is %g.\n', Pd)
Power using numeric integration is 3.55548.

Method 2: using Parseval's relation

in@ = n==0; % mask where n=0

Pp = a(in@).”2 + sum(a(~in®).”2)/2;

fprintf('Power using Parseval is %g.\n', Pp)
Power using Parseval is 3.55466.

Extra method: analytically

Pa = 4*(A”2)/3/T0; % Area under the f~2(t) in 1 period is 4(A”2)/3. Can be found by evaluating the integral analytically.
fprintf('Power analytically is %g.\n', Pa)

Power analytically is 3.55556.



