EE3032, Winter 2019-'20, Homework 4 Solutions, Dr. Durant

Problem 2.14: Functions x(t) and h(t) are given by

x(t) = sin(zr),0 <t < 1:0 otherwise

Determine y(t) = x(1) = h(1).

The result of convolving with u(t) is to integrate the function from -« to t, so the result will be 0
until t=0, vary until t=1, and then be a constant value forever.
y(t) = [ sin(at)dt = — L cos(ar) |y = L= cos(at)

J0 T T

1) =1 —cos(m) —
/4

w(

8 o

t = -1:0.02:2;
y = zeros(size(t));

rel = @ <= t & t <= 1;

y(rel) = (1-cos(pi*t(re1)))/pi;

y(t>=1) = 2/pi;

figure, plot(t,y), title('Problem 2.14")
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Problem 2.15(b): Compute the following convolutions without computing any
integrals: u(t) = [2u(t) = 2u(t = 3)]

Again, convolving with u(t) gives the integral from -« to t of the other function. The other function
is a height 2 pulse while t is between 0 and 3 s. So, the integral is a slope 2 ramp starting at 0,
and flattinging off at t=3. This is accomplished by simply replacing "u" with "r" since ramp is the
integral of step (is the integral of impulse).

y(t) =2r(t) =2r(t=3)

t = -1:0.02:4;
y = zeros(size(t));

re = t>=0; y(re) = 2*t(re); % 2r(t)

r3 = t>=3; y(r3) = y(r3) - 2*¥(t(r3)-3); %y -= 2r(t-3)
figure, plot(t,y), title('Problem 2.15(b)")
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Problem 2.16(a): Compute the following convolutions without computing any

integrals: (1 — 2) * [u(t) = 3u(t = 1) + 2u(t = 2)]

Consider the impulse at t=2 to be the impulse response. This shows that the system just delays
the input (2nd signal) by 2 s. So, we have
y(it) =ult —2) —3ult—3) + 2ult —4)

t
y

-1:0.05:5;
(t>=2) - 3*(t>=3) + 2*(t>=4)



figure, plot(t,y), title('Problem 2.16(a)")
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Problem 2.22(b,f) Determine whether or not each of the LTI systems whose
impulse responses are specified below are (i) causal and/or (ii) BIBO stable.

() h(t) = (1 = |t ult+1) —ult=1)]

This is not causal since it is non-zero for negative t due to u(t+1) starting at t=-1. This indicates
outputs occur up to 1 second before inputs occur.

The system is stable since h(t) is absolutely integrable. h(t) is a triangle with base on r € [—1, 1]
and height 1. Therefore its (absolute) area is 1, which is finite as required for stability.

M) =1 _ulr)
t+ 1

This is causal due to multiplication by u(t) forcing a 0 value for t<0.

The system is not stable. The indefinite integral is In(t+1), which diverges as t approaches infinity.

Problem 2.27: Prove the following statements.
(a) Series combinations of BIBO-stable systems are BIBO stable.

Systems in series mean each system receives as input the output of the previous system.



Consider N stable systems. Let cO be the finite bound on the input. Let A1..AN be the finite
maximum gain bounds, so we have outputs c1 bounded by cOA1, c2 bounded by cOA1A2, etc.
These gain bounds are multiplied to yields the bound for the composite system as c* =
c1xc2x...xc(N-1)xcN. We must further assume that N is finite, which is reasonable in this problem.
Then c* must be finite since a finite product of finite numbers is finite. Since c* exists and is finite,
we have a finite bound on the system output, which is the definition of BIBO stability.

(b) Series connections of causal systems are causal.

Systems in series mean each system receives as input the output of the previous system.
Consider N causal systems. Let tN be the first time for which hN(t) is not 0; since the systems are
causal, tN >= 0 for all N. We proved in class that we can get the impulse response of a composite
of systems in series by convolving all the impulse respones. We also showed, via the width
property, that the the first time for which the result of convolution is non-zero is the sum of when
each of the inputs is non-zero. By induction, we can then say that if we convolve N functions the
first time that the result is non-zero is the sum of all the tN. All tN are >= 0. Therefore the sum of
all tN is >= 0 and the result is causal. (Note: in this case, we did not need to require that there be
a finite number of systems.)

Problem 2.29(c,d,f) An LTI system has the frequency response function

Hw) = ; Compute the output if the inputs is
Jjo + 3
(c) x(t) = 5 cos(4t)
Calculate the gain and phase shift: H(4) = ‘4]+ = 0.2£ -0.9273
J4+:

y(r) =5x0.2cos(4r —0.9273) = cos(4r —0.9273) [-0.9273 = atan2(-4,3) = -53 degrees]
(d) x(r) =0o(1)

Recognize that h(t) = ¢ 'u(t) yields the given transfer function. Then, h(t) = y(t) since it is given
that the input is the unit impulse.

Note: Common errors on this problem were assuming that x(t) has a single frequency (it doesn't;
we will show later that it actually has an infinite number of frequencies) and that due to its infinitely
narrow width that the output is 0 (The delta still has area 1 (often volts times seconds)).

() x(t) =1

H) =1
3
y(t) = 1/3

Problem 2.31: An LTI system has the impulse response /(1) = ¢ '">'u(t). The

input to the system is x(7) = 12 + 26 cos(5¢) + 45 cos(9¢) + 80 cos(16¢)
. Compute the output y(t).



|
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Recognize that the corresponding H (w) = . And we have 4 components (including DC)

with...

omega = [0 5 9 16];

A = [12 26 45 80];

H=1./ (1j*omega+12);

disp([abs(H); angle(H); rad2deg(angle(H))]) % show in polar form

0.0833 0.0769 0.0667 0.0500
0 -0.3948 -0.6435 -0.9273
0 -22.6199 -36.8699 -53.1301

Y = A.*abs(H); % amplitude = original amplitude times gain
disp(Y)

1.0000 2.0000 3.0000 4.0000

All the cosines were input with no phase shift, so the phase shifts due to H are the resulting
phases. Putting it all together...

y(t) =1+ 2cos(5t=0.3948) + 3 cos (9t — 0.6435) + 4 cos (16t — 0.9273)



