Milwaukee School of Engineering

Electrical Engineering and Computer Science Department

EE-3032 – Final Exam – Dr. Durant

November, 2017

May use $8\frac{1}{2}$ × 11" note sheet. No calculator.

Good luck!

Name: _____

- Page 3: (17 points) _____
- Page 4: (24 points) _____
- Page 5: (16 points) _____
- Page 6: (15 points) _____
- Page 7: (12 points) _____
- Page 8: (16 points) _____
- Total: (100 points) _____

Table 5.1

Basic Properties of Fourier Transform

	Time Domain	Frequency Domain
Signals and constants	$x(t), y(t), z(t), \alpha, \beta$	$X(\Omega), Y(\Omega), Z(\Omega)$
Linearity	$\alpha x(t) + \beta y(t)$	$\alpha X(\Omega) + \beta Y(\Omega)$
Expansion/contraction in	$x(\alpha t), \alpha \neq 0$	$\frac{1}{ \alpha }X\left(\frac{\Omega}{\alpha}\right)$
time		
Reflection	x(-t)	$X(-\Omega)$
Parseval's energy relation	$E_x = \int_{-\infty}^{\infty} x(t) ^2 dt$	$E_{x} = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\Omega) ^{2} d\Omega$
Duality	X(t)	$2\pi x(-\Omega)$
Time differentiation	$\frac{d^n x(t)}{dt^n}, n \ge 1$, integer	
Frequency differentiation	-jtx(t)	$\frac{dX(\Omega)}{d\Omega}$
Integration	$\int_{-\infty}^{t} x(t') dt'$	$\frac{X(\Omega)}{j\Omega} + \pi X(0)\delta(\Omega)$
Time shifting	$x(t-\alpha)$	$e^{-j\alpha\Omega}X(\Omega)$
Frequency shifting	$e^{j\Omega_0 t} x(t)$	$X(\Omega - \Omega_0)$
Modulation	$x(t)\cos(\Omega_c t)$	$0.5[X(\Omega - \Omega_c) + X(\Omega + \Omega_c)]$
Periodic signals	$x(t) = \sum_{k} X_k e^{jk \Omega_0 t}$	$X(\Omega) = \sum_{k} 2\pi X_k \delta(\Omega - k\Omega_0)$
Symmetry	x(t) real	$ X(\Omega) = X(-\Omega) $
~ ~		$\angle X(\Omega) = -\angle X(-\Omega)$
Convolution in time	$z(t) = [x^*y](t)$	$Z(\Omega) = X(\Omega)Y(\Omega)$
Windowing/Multiplication	x(t)y(t)	$\frac{1}{2\pi}[X * Y](\Omega)$
Cosine transform	x(t) even	$X(\Omega) = \int_{-\infty}^{\infty} x(t) \cos(\Omega t) dt$, real
Sine transform	x(t) odd	$X(\Omega) = -j \int_{-\infty}^{\infty} x(t) \sin(\Omega t) dt$, imaginary

Table 5.2

Fourier Transform Pairs

	Function of Time	Function of Ω
(1)	$\delta(t)$	1
(2)	$\delta(t- au)$	$e^{-j\Omega\tau}$
(3)	<i>u</i> (<i>t</i>)	$\frac{1}{j\Omega} + \pi \delta(\Omega)$
(4)	u(-t)	$\frac{-1}{j\Omega} + \pi \delta(\Omega)$
(5)	sign(t) = 2[u(t) - 0.5]	$\frac{2}{j\Omega}$
(6)	$A, -\infty < t < \infty$	$2\pi A\delta(\Omega)$
(7)	$Ae^{-at}u(t), a > 0$	$\frac{A}{j\Omega + a}$
(8)	$Ate^{-at}u(t), a > 0$	$\frac{A}{(j\Omega+a)^2}$
(9)	$e^{-a t }, a > 0$	$\frac{2a}{a^2+\Omega^2}$
	$\cos(\Omega_0 t), -\infty < t < \infty$	$\pi[\delta(\Omega - \Omega_0) + \delta(\Omega + \Omega_0)]$
(11)	$\sin(\Omega_0 t), -\infty < t < \infty$	$-j\pi[\delta(\Omega-\Omega_0)-\delta(\Omega+\Omega_0)]$
(12)	$p(t) = A[u(t+\tau) - u(t-\tau)], \tau > 0$	$2A\tau \frac{\sin(\Omega\tau)}{\Omega\tau}$
(13)	1 71	$P(\Omega) = u(\Omega + \Omega_0) - u(\Omega - \Omega_0)$
(14)	$x(t)\cos(\Omega_0 t)$	$0.5[X(\Omega - \Omega_0) + X(\Omega + \Omega_0)]$

- 1. (4 points) **Sketch** the **imaginary** part of $x(t) = 5e^{(-1+j2\pi)t} u(t)$.
- 2. (4 points) *Explain* whether $s(t) = sin(3\pi t) + cos(7\pi t)$ is *periodic*. If it is, calculate its *fundamental period*.
- 3. (4 points) *Explain* whether $y(t) = cos(t) + sin(\pi t)$ is *periodic*. If it is, calculate its *fundamental period*.
- 4. (5 points) *Calculate Y(\Omega)*, the Fourier transform of y(t), or explain why it cannot be done.

- 5. (7 points) *Find a* > 2 such that z(t) = r(t) + r(t-1) 3r(t-2) + r(t-a) has *finite energy*. *Sketch* the resulting z(t).
- 6. (6 points) Let $w(t) = 4 \sin (\Omega_1 t)$. *Fold* the signal, *double* its frequency, *and then delay* the result by 1 second.
- 7. (6 points) Let $v(t) = e^{at}u(-t)$, a>0. **Decompose v(t)** into even and odd signals such that $v(t) = v_e(t) + v_o(t)$.
- 8. (5 points) *Calculate* the *energy or power* as appropriate of $q(t) = (2+3j)e^{j\pi t/2}(u(t)-u(t-10))$.

- 9. (6 points) Let x(t) be an unknown system input and y(t) be the corresponding system output.
 Specifically, let y(t) = e^{-a|t|}x(t), a>0. *Prove or convincingly explain* whether this system has each of the following properties:
 - a. Linear
 - b. Time-invariant
 - c. BIBO stable
- 10. (6 points) Now, consider the system y(t) = x(t)x(t-1). *Prove or convincingly explain* whether this system has each of the following properties:
 - a. Linear
 - b. Time-invariant
 - c. BIBO stable
- 11. (4 points) Which of the following properties are necessary for a system to have an impulse response?
 - a. Causal
 - b. Linear
 - c. BIBO stable
 - d. Time-invariant

12. (15 points) Let a system have impulse response h(t) = e^{-t}u(t). Let the system input be x(t) = u(t) – u(t-3). *Find* the *system output* y(t) *using convolution*. Hint: there are *2 non-trivial pieces*. *Sketch* your result.

- 13. (12 points) A periodic signal has the Fourier Series {2/5, 0, -2/3, 0, 2, $\underline{0}$, 2, 0, -2/3, 0, 2/5}. $\Omega_0 = 2\pi$.
 - a. What is the **DC offset** of the signal?
 - b. Is the signal *even, odd, or neither*?
 - c. Sketch the power spectrum of the signal.
 - d. What is the *power* of the signal?
 - e. What is the Fourier *transform* of this periodic signal?
 - f. What is the *time-domain signal* itself?

- 14. (4 points) Sketch the *magnitude response* from -10 to 10 Hz of a *bandpass filter* that passes signals between 2 and 4 Hz, but blocks signals outside of this range.
- 15. (6 points) Use lines 13 and 14 from Table 5.2 to determine the *impulse response h(t)* of this system, assuming that the *phase shift is 0*.
- 16. (6 points) Let a system have impulse response $h(t) = 20e^{-4t}u(t)$. Let the system input be the steady state signal x(t) = sin(3t). What is the **steady state output**?