
CSC4601/5601 Theory of ML Problem Set 2

You may complete the following entirely in a Jupyter notebook. Ensure that the notebook has your
name on it. Save the notebook as a PDF and submit the PDF through Canvas and also upload
your notebook file to Canvas if your professor is not having you submit it another way, such as via
GitHub.

1) In lecture, we discuss evaluating models on a grid of points to estimate and visualize the decision
boundaries learned by a model. In this problem, you are going to walk through that process.

(a) Using np.linspace and np.meshgrid functions from NumPy, create grids of x1 values and
x2 values in the 2-dimensional space bounded by 0 ≤ x1 ≤ 10 and 0 ≤ x2 ≤ 10. Use 20 points
along each dimension (400 points total).

(b) Save the grids of x1 values and x2 values returned by np.meshgrid in a matrix of observations
X. The matrix should have 2 columns (first column for x1 and second column for x2) and
400 rows. Hint: To transform the grids of x1 values into a column vector, use np.reshape.
Same thing for x2. To create the 400× 2 matrix, use np.hstack. Plot the observations in X
using a scatter plot.

(c) We will learn later how for a linear classification model (like logistic regression), the weighted
sum of the features can be mapped to a certainty measure that tells us how likely a given
feature vector belongs to class 1 or 0. If the weighted sum is positive: the higher the sum,
the more certain we are that the sample belongs to class 1. If the weighted sum is negative:
the lower the sum, the more certain we are that the sample belongs to class 0. In both cases,
the closer the weighted sum is to 0, the less certain we become. In the next questions, you
will visualize the output of the weighted sum of a trained linear classification model.

Assume we trained a linear classification model on a 2-dimensional data and we found that
w = (5, 3) and w0 = −10. For each point in X (for each row), you will need to find the
weighted sum, i.e., create a vector v such as v = Xw+ w0.

(d) To visualize the values of the weighted sum in the feature space, use Seaborn’s heatmap

function to plot the values of the weighted sum. You might not have the seaborn package
installed. If needed, after activating your local csc4601 environment, execute conda install
seaborn. Hint: You’ll need first to convert v to a square 20× 20 array using np.reshape and
then pass the matrix to the function heatmap of Seaborn.

(e) You may have noticed that v contains continuous values. We can convert the continuous
values to categorical by using a threshold. Whenever a value ≤ 0, the label should be 0.
When the value is > 0, the label should be 1. Create a vector of predicted (categorical) labels
ŷ. Hint: y hat = v > 0 works here because True will be treated as 1 and False as 0, but more
generally we would need to use mask arrays as indexes to set the various class labels.

(f) Use Matplotlib’s contourf function to create a contour plot from the binary values ŷ. Hint1:
You’ll need to ensure the binary vector ŷ is 20× 20 square array; use np.reshape if needed.
Hint2: An example that uses contourf can be found here.
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https://numpy.org/doc/stable/reference/generated/numpy.linspace.html
https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html
https://numpy.org/doc/stable/reference/generated/numpy.reshape.html
https://numpy.org/doc/stable/reference/generated/numpy.hstack.html
https://seaborn.pydata.org/generated/seaborn.heatmap.html
https://jakevdp.github.io/PythonDataScienceHandbook/04.04-density-and-contour-plots.html#Visualizing-a-Three-Dimensional-Function
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2) In lecture, we discuss geometric objects (e.g., points, vectors, and planes) and how they can be
used to model linear decision boundaries. This problem explores some of their properties and how
to apply these objects to classification. Stating the parametric equation of a line x in terms of a
normal vector n and a point on the line p, we have n · (x− p) = 0.

(a) Write the equations for each plane with normal vector n and intersecting the point r0:

(i) n = (1, 1), r0 = (5, 7)

(ii) n = (−1,−1), r0 = (5, 7)

(iii) Optional n = (1, 1, 0), r0 = (1, 2, 3)

(iv) Optional n = (−1,−1, 0), r0 = (1, 2, 3)

(v) Explain why you cannot find a plane from the following: n = (1, 3, 5, 11), r0 = (13, 17)

(vi) Simplify the equations from (i-iv) as much as possible. What do you notice about the
pairs (i) and (ii) and (iii) and (iv)?

(vii) Optional Plot the normal vectors, points, and planes from (i-iv). Hints: Planes in 2D
spaces are lines. For the 3D case, create a 3D projection and use the plot surface

function to create the plane.

(b) Planes divide spaces in half. We can use the sign of a dot product operation to determine
which side of the plane a point lies. Here is the equation of the line; remember the dot product
is 0 only for points that lie on the line.

(2, 2) · (x1 − 5, x2 − 5) = 0

x1 x2
2 15

3 17

4 13

4 1

5 3

6 2

(i) Calculate the sign for each of the given points. np.dot can calculate all the dot products
at once if you give it the 6x2 matrix of differences as its first argument and the length-2
normal vector as its second argument. Always check the NumPy documentation for
shortcuts like these.

(ii) Plot the line, normal vector and points. You have two options here: you can use Mat-
plotlib OR you can sketch everything on paper.

(iii) Verify that for all points that lie on the same side of the normal vector, the dot product
is positive.
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3) Standardization
Many machine learning algorithms are sensitive to the centering and scaling of features. Let’s walk
through what this means. To “center” data, we shift the data so that the mean is 0. We do this
by subtracting the mean x̄ value from every data point.

z = x− x̄

Here x represents the value of a given feature that corresponds to a particular sample. The mean
x̄ is the mean of all values of the given feature across all samples (mean of a given column).
To “scale” data, we want to “squish” the data so that the standard deviation is 1. We do this by
dividing every data point by the standard deviation σ.

z =
x

σ

We often combine these into a single equation:

z =
x− x̄

σ

A few notes on best practices: Centering and scaling is done independently for every column in the
feature matrix. When using training and testing sets, we calculate x̄ and σ from the training set
and use both to center and scale the training and testing sets.

(a) Load the data from the file peaks lfc.csv using Pandas or NumPy. (It only contains one
column.)

(b) Plot a histogram of the data. Hint: use Seaborn’s displot function.

(c) Center the data. Plot the histogram. What’s different? Hint: Use Numpy’s mean function.

(d) Scale the data. Plot the histogram. What’s different? Hint: Use Numpy’s std function.

(e) Both center and scale the data. Plot the histogram. What’s different?
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https://seaborn.pydata.org/generated/seaborn.displot.html#seaborn.displot
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4) Observation distances
Explore how distance from the decision boundary is related to the output of our linear models.

1. Load in the IRIS dataset and put the first two features into a feature matrix. Plot these
observations.

2. Plot the following decision boundary on the figure:

x2 = 0.75x1 − 0.9

To proceed, choose one option:

Option 1 - Longer for complete grade

3. Find the projections from each observation to the line and plot a line segment for each
observation

(a) We are finding the orthogonal projection of a point (observation) to the line (model)

(b) Note that we are looking for line segments that are orthogonal to the model

i. The model is in the form of x2 = mmodelx1 + b

ii. We want to solve for the orthogonal slope morthogonal

iii. mmodelmorthogonal = −1 → morthogonal = −4
3

iv. This gives us a “line template” of x2 = −4
3x1 + b, and now we have to solve for b

given our point (observation)

v. Given the first point in the dataset - Obs1 = (5.1, 3.5), we can solve 3.5 = −4
3(5.1)+

b → b = 10.3

vi. Now we have two equations and two unknowns

� x2 =
3
4x1 − 0.9

� x2 = −4
3x1 + 10.3

vii. We can put these in a standard form:

�
3
4x2 − x1 = 0.9

� −4
3x2 − x1 = −10.3

viii. In the standard form we can use linear algebra to solve for the system of equations:

�

[
3
4 −1
−4

3 −1

][
x1
x2

]
=

[
0.9

−10.3

]
�

[
x1
x2

]
=

[
3
4 −1
−4

3 −1

]−1 [
0.9

−10.3

]
� Where (x1, x2) is the projection of our point (observation) onto the line (model)

ix. You now have two points, solve for the distance between the two points

� ||a-b||→ 0.46

x. Add a vector to your figure that connects the point on the model to the observation
in space, color it according to the distance.

xi. Do this for all observations in the dataset.
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Option 2 - Shorter for partial grade
Suppose a linear classification model has the following decision boundary:

wTx+ w0 = 0

We can show that the distance from an observation point xobs = (x1, x2) to the decision
boundary is given by:

distance from xobs to the line =
|wTxobs + w0|

∥w∥
(1)

� How is the weighted sum of the features of xobs is related to its distance from the
line?

� Rearrange the terms of the given decision boundary

x2 = 0.75x1 − 0.9

so that you obtain the line’s equation in standard form. Extract the normal vector
w and w0. Choose two samples/observations from the given dataset. Compute their
distances from the line using the formula in (1). Verify that the closer point to the
line has indeed a smaller value for the computed distance.
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