CSC4601/5601 Thoery of MLProblem Set 1: Linear Algebra Review Name:

1) For each of the following, indicate if it is a vector or matrix and its dimensions:
1. $u \in \mathbb{R}^{4}$
2. $p \in \mathbb{R}^{1 \times 6}$
3. $A \in \mathbb{R}^{5 \times 3}$
4. A^{T} where $A \in \mathbb{C}^{6 \times 3}$
2) Given the values of the entries indicated below.

$$
\begin{gathered}
U=\left[\begin{array}{ccc}
2 & 4 & 6 \\
9 & 15 & 19 \\
11 & 13 & 21
\end{array}\right] \\
v=\left[\begin{array}{l}
1 \\
3 \\
5 \\
7 \\
9
\end{array}\right]
\end{gathered}
$$

1. $U_{1,1}$
2. $U_{2,3}$
3. v_{4}
4. The diagonal elements of U.
3) Linear algebra operations require that the shapes of the matrices and/or vectors match up. For each operation below, indicate if it is valid. If it is valid, give the dimensions of the resulting object. Note that $N \times 1$ and $1 \times N$ are used to indicate column and row vectors, respectively.
1. $u \cdot v$ where $u, v \in \mathbb{R}^{5 \times 1}$
2. $u v$
3. $u^{T} v$
4. $u v^{T}$
5. $u+v$
6. $U V$ where $U \in \mathbb{R}^{5 \times 6}, V \in \mathbb{R}^{6 \times 7}$
7. $U^{T} V$
8. $U V^{T}$

CSC4601/5601 Thoery of MLProblem Set 1: Linear Algebra Review Name:
4) Perform the following linear algebra operations and write the result.

$$
\begin{aligned}
& u=\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right] \\
& v=\left[\begin{array}{c}
9 \\
15 \\
19
\end{array}\right]
\end{aligned}
$$

1. $u \cdot v$
2. $u v^{T}$
3. $u^{T} v$
4. $U V$ where $U=\left[\begin{array}{ccc}2 & 4 & 6 \\ 9 & 15 & 19 \\ 11 & 13 & 21\end{array}\right]$ and $V=\left[\begin{array}{ccc}2 & 4 & 6 \\ 8 & 10 & 12 \\ 14 & 16 & 18\end{array}\right]$
5) Give the vectors β and x that make the following equations equivalent.

$$
\begin{gathered}
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3} \\
y=x^{T} \beta
\end{gathered}
$$

6) Norms and distance.
1. Write the squared norm $\|v\|^{2}$ of a vector v in terms of a dot product.
2. Convert the equation for the Euclidean distance between two vectors u and v into vector notation using vector arithmetic and norms.

$$
d(u, v)=\sqrt{\left(u_{1}-v_{1}\right)^{2}+\left(u_{2}-v_{2}\right)^{2}+\cdots+\left(u_{n}-v_{n}\right)^{2}}
$$

