SE4920-Lecture 18 5/9/2006

SE-4920: Lecture 18
Web issues...

= ...including

= SQL injection

= OWASP (Open Web Application Security Project)
= Reading

= Chapter 25
= Today's Outcomes

= Describe the basic structure of URLs, HTTP requests, and
HTTP digest authentication as they relate to security
Explain the use of HTTP cookies
Define cross-site scripting

Explain an SQL injection attack and various methods of
remediation

= Be familiar with OWASP and the OWASP Top 10 list

URL structure

= protocol://[user[:password]@]site[:port]/[infoToSite]
= protocol = http | https | ftp | ...
= https = HTTP using SSL/TLS, default port 443
= site = DNS name or IP address
= User/password illegal for HTTP
= Most browsers ignore (vulnerability?)

= http://www.trustedbank.com:viewAccount@people.msoe.edu/
~durant/somethingBad/

i HTTP requests

s GET
= Retrieve data
= Any arguments must be in URL itself
= POST
= Submit data (message body beyond URL)
= Also receives reply

= HEAD, PUT, DELETE, TRACE, OPTIONS,
CONNECT

© Eric A. Durant, PhD 1

SE4920-Lecture 18 5/9/2006

i HTTP request headers

= Additional information optionally sent with an HTTP
request
= Security-related ones include...
= From: for email address, rarely used
= Authorization: actually authentication, browser prompts
user; may cache authentication data
= Basic (Base64 username/password [SSL?])
= Digest (hash-based method)
Cookie: return data chunk from server

Referer: (misspelled, and it stuck) — URL representing
source of request if not typed directly by user

HTTP digest authentication

= Used with or without SSL (which does not provide user authentication)
= Challenges: HTTP stateless; users share machines; no user-specific
configuration
= Steps
= Client requests resource
= Server responds with error 401 Unauthorized
« Authentication realm string (e.g., server pool)

= Whether integrity is not supported, optional, or mandatory
= Anonce
= Client asks user for username/password
= Client requests resource again
« Username, realm, nonce, URL segment, integrity choice, client counter, client
nonce
« MDS5 hash of
Client nonce, counter
MD5(username:realm:password) [this hash stored at server]
MDS5(URI segment)

HTTP digest authentication
features

= Compromising server database only
allows impersonation in the realm

= Client nonce/counter prevents replay

= Integrity protection only adds POST
body
= Digest already protects the rest

= Headers (e.g., cookies) not integrity
protected!

© Eric A. Durant, PhD 2

SE4920-Lecture 18 5/9/2006

Cookies

= Data given by server to client, to be returned to server (stateless
workaround)
= Limited to group of servers (2 dots for .com, etc.), perhaps specific
server
= May be limited to part of directory tree
= Expire at a given date and time (far in future?) or at end of session
= Recommended use: key for database lookup
= Beware an unencrypted connection
. glon)—recommended use: actual system data (e.g., prices of items to
uy.
= Can allow cross-site correlation, though
= Have cookie from A (CA) and cookie from B (CB)
= Site A redirects to http://B&remote=CA/
= Browser includes CB; servers correlate data

Cross-site scripting (XSS)

= One of the few areas in which the book (2002) is significantly
out of date
= The attacks are no longer just theoretical
= Definition has broadened
= Current definition
= Vulnerability whereby “same origin policy” is violated in client-side
scripting languages
= Basic pattern
= Unchecked data (perhaps by opening an attacker's URL)
= is given as an argument to a Web application
=« that includes the data in its generated content
= but does not check it — it may be code
= An attack: dynamically generate URL to attacker’s server that
includes protected data
= Cookies or anything client code has access to

SQL Injection

= Attack injecting SQL into dynamically
generated SQL statements

= Typically web applications, but any SQL
database based application

= A type of unvalidated input attack

© Eric A. Durant, PhD 3

SE4920-Lecture 18 5/9/2006

i SQL injection example (1/3)

= statement ;="

" + userName + "";*

| |
Administrator'; DROP TABLE users;
SELECT * FROM data WHERE name
LIKE '%

10

i SQL injection example (2/3)

= Many SQL APIs prevent multiple
statements in a single query, but still
may be vulnerable

$username

' or username is not null or
username="

11

i SQL injection example (3/3)

= Even escaping quotes may not be
enough

$userid

n 33
or userid is not null

12

© Eric A. Durant, PhD 4

SE4920-Lecture 18 5/9/2006

SQL injection remediation

= Libraries/APIs can help
= Simple approach: call a function to quote inputs
= Perl DBl module allows bindable SQL arguments
= API knows that a single argument is needed and quotes it
DB may support directly; API is aware of these; performance advantage
= Java PreparedStatement
= ADO.NET SqglCommand/OracleCommand (MSSQL/Oracle)
= Database stored procedures (custom functions exposed by
database)
= Best approach is to specify precisely what is allowed
= Filtering out what is not allowed is likely to miss something
= Also, use database (table, field) security features and restricted
DB accounts

13

OWASP (Open Web Application
Security Project)

= http://www.owasp.org/

= “dedicated to finding and fighting the causes
of insecure software”

= Produces free documentation

= Local chapters, memberships

= Many resources, including a top 10 list (with
detailed articles) for web application security

= An excellent resource, design/review checklist
source

14

OWASP Top 10 (5/9/2006)

= Al Unvalidated Input
= A2 Broken Access Control
= A3 Broken Authentication and Session Management
= Single password change mechanism
= Confirm changes (e.g., email change)
= Prefer hashed password storage
= Encrypt the session (hashed password in transit has value)
= A4 Cross Site Scripting (XSS) Flaws
= A5 Buffer Overflows

15

© Eric A. Durant, PhD 5

SE4920-Lecture 18 5/9/2006

OWASP Top 10 continued

= A6 Injection Flaws
= A7 Improper Error Handling
= A8 Insecure Storage
= Misuse of cryptography
= Insecure key/password storage
= Retaining secrets in memory
= Poor randomness sources
= A9 Denial of Service
= Account lockout
= Emailed password changes not checked/intercepted
= A10 Insecure Configuration Management
= Unpatched systems
= Default permissions and accounts
= Overly informative error messages

16

i Additional references

= http://en.wikipedia.org/wiki/
Digest_access_authentication
= http://en.wikipedia.org/wiki/XSS

= http://en.wikipedia.org/wiki/
Sql_injection

17

© Eric A. Durant, PhD 6

