
SE4920-Lecture 18 5/9/2006

© Eric A. Durant, PhD 1

1

SE-4920: Lecture 18
Web issues…

…including
SQL injection
OWASP (Open Web Application Security Project)

Reading
Chapter 25

Today’s Outcomes
Describe the basic structure of URLs, HTTP requests, and
HTTP digest authentication as they relate to security
Explain the use of HTTP cookies
Define cross-site scripting
Explain an SQL injection attack and various methods of
remediation
Be familiar with OWASP and the OWASP Top 10 list

2

URL structure
protocol://[user[:password]@]site[:port]/[infoToSite]

protocol = http | https | ftp | …
https = HTTP using SSL/TLS, default port 443

site = DNS name or IP address
User/password illegal for HTTP

Most browsers ignore (vulnerability?)
http://www.trustedbank.com:viewAccount@people.msoe.edu/
~durant/somethingBad/

3

HTTP requests
GET

Retrieve data
Any arguments must be in URL itself

POST
Submit data (message body beyond URL)
Also receives reply

HEAD, PUT, DELETE, TRACE, OPTIONS,
CONNECT

SE4920-Lecture 18 5/9/2006

© Eric A. Durant, PhD 2

4

HTTP request headers
Additional information optionally sent with an HTTP
request
Security-related ones include...

From: for email address, rarely used
Authorization: actually authentication, browser prompts
user; may cache authentication data

Basic (Base64 username/password [SSL?])
Digest (hash-based method)

Cookie: return data chunk from server
Referer: (misspelled, and it stuck) – URL representing
source of request if not typed directly by user

5

HTTP digest authentication
Used with or without SSL (which does not provide user authentication)
Challenges: HTTP stateless; users share machines; no user-specific
configuration
Steps

Client requests resource
Server responds with error 401 Unauthorized

Authentication realm string (e.g., server pool)
Whether integrity is not supported, optional, or mandatory
A nonce

Client asks user for username/password
Client requests resource again

Username, realm, nonce, URL segment, integrity choice, client counter, client
nonce
MD5 hash of

Client nonce, counter
MD5(username:realm:password) [this hash stored at server]
MD5(URI segment)

6

HTTP digest authentication
features

Compromising server database only
allows impersonation in the realm
Client nonce/counter prevents replay
Integrity protection only adds POST
body

Digest already protects the rest
Headers (e.g., cookies) not integrity
protected!

SE4920-Lecture 18 5/9/2006

© Eric A. Durant, PhD 3

7

Cookies
Data given by server to client, to be returned to server (stateless
workaround)
Limited to group of servers (2 dots for .com, etc.), perhaps specific
server
May be limited to part of directory tree
Expire at a given date and time (far in future?) or at end of session
Recommended use: key for database lookup

Beware an unencrypted connection
Non-recommended use: actual system data (e.g., prices of items to
buy)
Can allow cross-site correlation, though

Have cookie from A (CA) and cookie from B (CB)
Site A redirects to http://B&remote=CA/

Browser includes CB; servers correlate data

8

Cross-site scripting (XSS)
One of the few areas in which the book (2002) is significantly
out of date

The attacks are no longer just theoretical
Definition has broadened

Current definition
Vulnerability whereby “same origin policy” is violated in client-side
scripting languages

Basic pattern
Unchecked data (perhaps by opening an attacker’s URL)
is given as an argument to a Web application

that includes the data in its generated content
but does not check it – it may be code

An attack: dynamically generate URL to attacker’s server that
includes protected data

Cookies or anything client code has access to

9

SQL Injection
Attack injecting SQL into dynamically
generated SQL statements

Typically web applications, but any SQL
database based application
A type of unvalidated input attack

SE4920-Lecture 18 5/9/2006

© Eric A. Durant, PhD 4

10

SQL injection example (1/3)
statement := "SELECT * FROM users
WHERE name = '" + userName + "';“

SELECT * FROM users WHERE name =
'Administrator'; DROP TABLE users;
SELECT * FROM data WHERE name
LIKE '%';

11

SQL injection example (2/3)
Many SQL APIs prevent multiple
statements in a single query, but still
may be vulnerable
SELECT * from items where
username='$username';
SELECT * from items where
username='' or username is not null or
username='';

12

SQL injection example (3/3)
Even escaping quotes may not be
enough
SELECT * from items where
userid=$userid;
SELECT * from items where userid=33
or userid is not null;

SE4920-Lecture 18 5/9/2006

© Eric A. Durant, PhD 5

13

SQL injection remediation
Libraries/APIs can help

Simple approach: call a function to quote inputs
Perl DBI module allows bindable SQL arguments

API knows that a single argument is needed and quotes it
DB may support directly; API is aware of these; performance advantage

Java PreparedStatement
ADO.NET SqlCommand/OracleCommand (MSSQL/Oracle)

Database stored procedures (custom functions exposed by
database)

Best approach is to specify precisely what is allowed
Filtering out what is not allowed is likely to miss something

Also, use database (table, field) security features and restricted
DB accounts

14

OWASP (Open Web Application
Security Project)

http://www.owasp.org/
“dedicated to finding and fighting the causes
of insecure software”
Produces free documentation
Local chapters, memberships
Many resources, including a top 10 list (with
detailed articles) for web application security

An excellent resource, design/review checklist
source

15

OWASP Top 10 (5/9/2006)
A1 Unvalidated Input
A2 Broken Access Control
A3 Broken Authentication and Session Management

Single password change mechanism
Confirm changes (e.g., email change)
Prefer hashed password storage
Encrypt the session (hashed password in transit has value)

A4 Cross Site Scripting (XSS) Flaws
A5 Buffer Overflows

SE4920-Lecture 18 5/9/2006

© Eric A. Durant, PhD 6

16

OWASP Top 10 continued
A6 Injection Flaws
A7 Improper Error Handling
A8 Insecure Storage

Misuse of cryptography
Insecure key/password storage
Retaining secrets in memory
Poor randomness sources

A9 Denial of Service
Account lockout
Emailed password changes not checked/intercepted

A10 Insecure Configuration Management
Unpatched systems
Default permissions and accounts
Overly informative error messages

17

Additional references
http://en.wikipedia.org/wiki/
Digest_access_authentication
http://en.wikipedia.org/wiki/XSS
http://en.wikipedia.org/wiki/
Sql_injection

