SE4920-Lectures 10-11 4/5/2007

SE-4920: Lectures 10-11
Public key algorithms

= Reading
= Chapter 6 (pp. 147-160, 163-170)
= Today’s Outcomes
= Perform modular arithmetic (addition,
multiplication, exponentiation)
= Apply basic theory of modular arithmetic (Totient
function, Euler’s theorem, ...)
= Execute and adpply the RSA algorithm for
encryption and digital signatures
= Execute and apﬁly the Diffie-Hellman algorithm for
establishing a shared secret

i Modular arithmetic

= “mod n” arithmetic
= Like normal arithmetic, but final result is
taken mod n
= mod 6 addition
=2+3=5
=4+5=3
«4+2=0

Modular arithmetic:
additive inverse

= In regular arithmetic, (@) + (-a) = 0
= -a is the additive inverse of a

= mod 6 additive inverses
= 2+4 =0, therefore -2 = 4
s X+2+4=Xx

© Eric A. Durant, PhD 1

SE4920-Lectures 10-11 4/5/2007

Modular arithmetic: multiplication

= Consider mod 10 multiplication
= 2:3=6
= 2:-7=14=4mod 10
= 3-{0,1,..,9+=H0,3,9,2,5/8,1,4,7}
= 8-{0,1,..,9+={0,8,6,4,2,0,8,6,4}
= Multiplying by 3 is reversible, but 8 isn't
= Big difference from integers, reals, rationals, etc.
= 3 has a multiplicative inverse, but 8 doesn’t
= Finding the multiplicative inverse is easy
But we won't cover it here
Euclid’s algorithm in chapter 7
- 31=7

. x:3:7 = (x-21) mod 10 = ((x mod 10) - (21 mod 10)) mod 10 =
x mod 1

Modular arithmetic:
multiplicative inverses

= When does a multiplicative inverse exist?
= When the multiplier, x, is relatively prime to the number of
elements, n.
=« GCD(x, n) =1
= Forn =10,
x = {1, 3, 7, 9} are the only values that give a GCD of 1
Only multipliers with multiplicative inverses: {1, 7, 3, 9}
= How many numbers less than n are relatively prime
ton?
= The answer is Euler’s totient function, @(n)
= Foraprime, (p) =p-1
» For a product of 2 primes, ®(pq) = pq-p-q+ 1 = (p-1)(g-1)
= These are the 2 relevant cases for chapter 6

Modular arithmetic:
exponentiation

= 37 =2187 =7 mod 10
= Taking remainder earlier gives same result
8 37=334=71=7
= Construct x¥ table, with exponents from 1 to
12
= Note that x» = x*4 mod 10
= Fact: x¥ mod n = x¥mod (M) mod n
» For n prime or product of distinct primes (no p?)
= If y = 1 mod ¢@(n)
» XY = x mod n (useful fact for RSA algorithm)

© Eric A. Durant, PhD

SE4920-Lectures 10-11 4/5/2007

RSA

= Inventors Rivest, Shamir, and Adleman
= Public key algorithm
= Variable key length, commonly 512 b
= Variable block size
= Plaintext shorter than key
= Ciphertext same length as key
= Much slower than DES and most secret key
algorithms
= Commonly used for exchanging a secret key (e.g., for DES)
= With no pre-shared secret

RSA algorithm: Key generation

= Choose 2 large, secret, primes, p and q
= Around 256 bits each
= N =pq
= Given n, it is impractical to find p and q
= Public key <e, n>
= Choose e (it can be small) that is relatively prime to @(n)
= You know ¢@(n) = (p-1)(g-1)
But others would need to do a brute force search
= Private key <d, n>
= Find d = e mod @(n)
= Easy only if you know ¢(n)

RSA algorithm:
encryption / decryption

= Encrypt
= C=memod n (where m < n)
= Decrypt
= ¢@ =md modn=m!modn
= Since de = 1 mod ¢(n)
= Sign
= s=mdmodn
= Verify

= s mod n = md mod n = m! mod n

© Eric A. Durant, PhD 3

SE4920-Lectures 10-11 4/5/2007

i RSA example

s p=11,q=17
= e = 3 (verify compatible with @(n))
=« d =107
= Easy to find with Euclid’s algorithm (chapter 7)
= m=127

= Calculate c (172)

= Calculate m from c (indeed 127)
= How can this be done efficiently?
= Do we really need to calculate 172107 2?11

i Generating RSA keys

= Can be expensive (a few minutes)
= But must be feasible
= Choose p and g randomly and test for
primality
= Can get very high probability without much work
= The odds are against us on any 1 number
» Probability of random n being prime is about 1/(In n)
» Linear increase in In n with length of prime

About 1/21 for numbers around 230
About 1/210 for numbers around 2300

Generating RSA keys:
primality tests

= Fermat’s Little Theorem
= Fora<p,a”=1modp
= It can happen for non-primes for some a’s, but rare
= About 1 in 1013 chance for hundred-digit p
So, try a few a’s and make sure you get 1 for all
= Carmichael numbers (the main type of pseudoprime) will
give 1 for all a's, but they are not prime
= Only 585,355 Carmichael numbers less than 1017
= There are even better algorithms
= 2006 standard is Miller and Rabin’s algorithm (§6.3.4.2.1)

© Eric A. Durant, PhD 4

SE4920-Lectures 10-11 4/5/2007

i RSA: Choosing d and e

= GCD((p-1)(g-1),) = 1

= Select e at random and test for relative
primarily

= Or, Choose e and then select p and q
for relative primality

= Certain choices of e will make public key
computations easier without sacrificing
security

RSA: 3 is the smallest possible e

= 2 does not work since (p-1)(g-1) is even
= Encryption only needs 2 multiplies!
= Weaknesses (can work around)
= Short message, ¢ = m3 < n, take 3vic
= Pad short messages, usually with random number
= Encrypting to 3 recipients

= If you know the 3 keys (they are public!) and ciphertext, can compute m? mod
n

1NN

“Method in chapter 7 (Chinese Remainder Theorer)
Simple cube root
« Padding each message uniquely (even with user ID) will solve this problem
= Need GCD((p-1)(g-1),3) =1
= GCD(p-1,3) = 1and GCD(g-1, 3) = 1
= pandq must be 2 mod 3
= 1 would defeat GCD
= 0 would be non-prime

i RSA: 65537 is another common e

= 65537 = 216+1
= Largest known Fermat prime (2/2"+1)

= Total of 17 multiplies to exponentiate

» Expect about 384 multiplies for random
acceptable 256-bit e

And (on the order of) that many integer divisions

= Avoids most problems with 3

© Eric A. Durant, PhD 5

SE4920-Lectures 10-11

PKCS: Public-Key Cryptography
Standard

= Standards including message formats for applying
RSA for encryption and signing
= Random padding for encryption
= Built-in workarounds to problems with e = 3
= Signing
= Done on message digest / hash
= Generally too expensive for entire message
= Digest type (hash function) is part of signed quantity,

= so attacker cannot attach your signature
= to a different (fake) message
= using a weaker hash (e.g., a compromised one)

4/5/2007

i Diffie-Hellman

= Oldest PK system still in use

= Agree on a shared, secret key using
only public communication channels
= Does not provide authentication

i Diffie-Hellman

= Agree on p (large prime)
= Agreeong <p
= g must be a “primitive root” of p
= gl...gP 1 are a permutation of 1...p-1
= There are @(@(p)) = ¢(p-1) choices
= 2 or 3 often works
= No direct way to calculate

= But there are more efficient methods than
searching all primes

© Eric A.

Durant, PhD

SE4920-Lectures 10-11 4/5/2007

i Diffie-Hellman

= Alice picks S, and Bob picks Sg at random
(512 bits)

= Alice computes T, and Bob computes Tg

= Ts are exchanged

= Compute shared secret, K s

= Everyone knows the Ts Ty =g mod p
= Not enough to compute K

= T — Sis the “discrete logarithm problem”, and
mathematicians haven't solved it

T, =9 mod p

K =T,>* mod p=T,* mod p = g**

19

i Man-in-the-Middle Attack

= Diffie-Hellman has no authentication
= An active attacker between Alice and Bob
= who can intercept and rewrite the communication
= could share a key with each of them
= and decrypt/re-encrypt the traffic in each direction
= Still secure against passive attack

20

© Eric A. Durant, PhD 7

