SE-4920: Lectures 10-11

Public key algorithms

- Reading
- Chapter 6 (pp. 147-160, 163-170)
- Today's Outcomes
- Perform modular arithmetic (addition,
multiplication, exponentiation)
- Apply basic theory of modular arithmetic (Totient function, Euler's theorem, ...)
- Execute and apply the RSA algorithm for encryption and digital signatures
- Execute and apply the Diffie-Hellman algorithm for establishing a shared secret
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Modular arithmetic

- "mod n" arithmetic
- Like normal arithmetic, but final result is taken mod n
- mod 6 addition \qquad
- $2+3=5$
- $4+5=3$
- $4+2=0$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Modular arithmetic:
additive inverse

- In regular arithmetic, (a) + (-a) = 0
- -a is the additive inverse of a \qquad
- mod 6 additive inverses
- $2+4=0$, therefore $-2=4$
- $x+2+4=x$
\qquad
\qquad
\qquad
\qquad

Modular arithmetic:
 multiplicative inverses

- When does a multiplicative inverse exist?
- When the multiplier, x, is relatively prime to the number of elements, n.
- $\operatorname{GCD}(x, n)=1$
- For $\mathrm{n}=10$,
$\mathrm{x}=\{1,3,7,9\}$ are the only values that give a GCD of 1
Only multipliers with multiplicative inverses: $\{1,7,3,9\}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

How many numbers less than n are relatively prime to n ?

- The answer is Euler's totient function, $\varphi(\mathrm{n})$
- For a prime, $\varphi(p)=p-1$
- For a product of 2 primes, $\varphi(p q)=p q-p-q+1=(p-1)(q-1)$
- These are the 2 relevant cases for chapter 6
\qquad

Modular arithmetic:

- $3^{7}=2187=7 \bmod 10$
- Taking remainder earlier gives same result - $3^{7}=3^{33} 3^{4}=7 \cdot 1=7$
- Construct x^{y} table, with exponents from 1 to \qquad 12
- Note that $x^{n}=x^{n+4} \bmod 10$
- Fact: $x^{y} \bmod n=x^{y} \bmod \varphi(n) \bmod n$ \qquad - For n prime or product of distinct primes (no p^{2})
- If $\mathrm{y}=1 \bmod \varphi(\mathrm{n})$
- $\mathrm{xy}^{\mathrm{y}}=\mathrm{x} \bmod \mathrm{n}$ (useful fact for RSA algorithm)
\qquad

\qquad

RSA algorithm: Key generation

- Choose 2 large, secret, primes, p and q
- Around 256 bits each
- $\mathrm{n}=\mathrm{pq}$
- Given n , it is impractical to find p and q
- Public key <e, n>
- Choose e (it can be small) that is relatively prime to $\varphi(n)$ - You know $\varphi(n)=(p-1)(q-1)$

But others would need to do a brute force search

- Private key <d, n>
- Find $\mathrm{d}=\mathrm{e}^{-1} \bmod \varphi(\mathrm{n})$
- Easy only if you know $\varphi(\mathrm{n})$

RSA algorithm: \qquad
encryption / decryption

- Encrypt
- $\mathrm{c}=\mathrm{m}^{\mathrm{e}} \bmod \mathrm{n}$ (where $\mathrm{m}<\mathrm{n}$)
- Decrypt
- $C^{d}=m^{\text {de }} \bmod n=m^{1} \bmod n$
- Since de = $1 \bmod \varphi(n)$ \qquad
- Sign
- $s=m^{d} \bmod n$ \qquad
- Verify
- $\mathrm{s}^{\mathrm{e}} \bmod \mathrm{n}=\mathrm{m}^{\mathrm{de}} \bmod \mathrm{n}=\mathrm{m}^{1} \bmod \mathrm{n}$ \qquad
\qquad
\qquad
\qquad

Generating RSA keys

- Can be expensive (a few minutes) - But must be feasible
- Choose p and q randomly and test for primality
- Can get veryhigh probability without much work
- The odds are against us on any 1 number - Probability of random n being prime is about 1 /(ln n) \qquad
- Linear increase in In n with length of prime

$$
\text { About } 1 / 21 \text { for numbers around } 2^{30}
$$

About $1 / 210$ for numbers around 2^{300}
\qquad

Generating RSA keys:
 primality tests

- Fermat's Little Theorem
- For $\mathrm{a}<\mathrm{p}, \mathrm{a}^{\mathrm{p}-1}=1 \bmod \mathrm{p}$
- It can happen for non-primes for some a's, but rare - About 1 in 10^{13} chance for hundred-digit p

So, try a few a's and make sure you get 1 for all

- Carmichael numbers (the main type of pseudoprime) will give 1 for all a's, but they are not prime
- Only 585,355 Carmichael numbers less than 10^{17}
- There are even better algorithms
- 2006 standard is Miller and Rabin's algorithm (§6.3.4.2.1)

RSA: Choosing d and e

- $\operatorname{GCD}((p-1)(q-1), e)=1$
- Select e at random and test for relative primarily
- Or, Choose e and then select p and q for relative primality
- Certain choices of e will make public key computations easier without sacrificing security

RSA: 3 is the smallest possible e

- 2 does not work since $(p-1)(q-1)$ is even
- Encryption only needs 2 multiplies!
- Weaknesses (can work around)
- Short message, $c=m^{3}<n$, take $\sqrt{3} \sqrt{c}$

Encrypting to 3 recipients

- If you know the 3 keys (they are public!) and ciphertext, can compute $m^{3} \bmod$
$n_{1} \mathrm{n}_{2} \mathrm{n}_{3}$ Method in chapter 7 (Chinese Rema .

```
Padding each message
```

- Need $\operatorname{GCD}((\mathrm{p}-1)(\mathrm{q}-1), 3)=1$
- $\operatorname{GCD}(\mathrm{p}-1,3)=1$ and $\operatorname{GCD}(\mathrm{q}-1,3)=1$
- p and q must be $2 \bmod 3$
- 1 would defeat GCD
- 0 would be non-prime

RSA: 65537 is another common e

- $65537=2^{16}+1$
- Largest known Fermat prime ($2^{\wedge} 2^{n}+1$) \qquad
- Total of 17 multiplies to exponentiate
- Expect about 384 multiplies for random acceptable 256-bit e - And (on the order of) that many integer divisions
- Avoids most problems with 3
\qquad
\qquad

PKCS: Public-Key Cryptography

Standard

- Standards including message formats for applying RSA for encryption and signing
- Random padding for encryption
- Built-in workarounds to problems with e=3
- Signing
- Done on message digest / hash
- Generally too expensive for entire message
- Digest type (hash function) is part of signed quantity,
- so attacker cannot attach your signature
- to a different (fake) message
using a weaker hash (e.g., a compromised one)
\qquad
- Agree on p (large prime)
- Agree on g < p
- g must be a "primitive root" of p
- $\mathrm{g}^{1} . . . \mathrm{g}^{\mathrm{p}-1}$ are a permutation of $1 \ldots \mathrm{p}-1$ \qquad
- There are $\varphi(\varphi(p))=\varphi(p-1)$ choices
. 2 or 3 often works
- No direct way to calculate
- But there are more efficient methods than searching all primes \qquad
Alice picks S_{A} and Bob picks S_{B} at random (512 bits)
- Alice computes T_{A} and Bob computes T_{B}
- Ts are exchanged $\quad T_{A}=g^{S_{A}} \bmod p$
- Compute shared secret, K $\quad T_{B}=g^{S_{B}} \bmod p$
- Not enough to compute K
- $\mathrm{T} \rightarrow \mathrm{S}$ is the "discrete logarithm problem", and mathematicians haven't solved it

$$
K=T_{B}^{S_{A}} \bmod p=T_{A}^{S_{B}} \bmod p=g^{S_{A} S_{B}}
$$

