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SE-4920: Lectures 10–11
Public key algorithms

Reading
Chapter 6 (pp. 147–160, 163–170)

Today’s Outcomes
Perform modular arithmetic (addition, 
multiplication, exponentiation)
Apply basic theory of modular arithmetic (Totient
function, Euler’s theorem, …)
Execute and apply the RSA algorithm for 
encryption and digital signatures
Execute and apply the Diffie-Hellman algorithm for 
establishing a shared secret
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Modular arithmetic
“mod n” arithmetic

Like normal arithmetic, but final result is 
taken mod n

mod 6 addition
2 + 3 = 5
4 + 5 = 3
4 + 2 = 0

3

Modular arithmetic:
additive inverse

In regular arithmetic, (a) + (-a) = 0
-a is the additive inverse of a

mod 6 additive inverses
2 + 4 = 0, therefore -2 = 4
x + 2 + 4 = x
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Modular arithmetic: multiplication
Consider mod 10 multiplication

2 · 3 = 6
2 · 7 = 14 = 4 mod 10
3 · {0, 1, …, 9} = {0, 3, 9, 2, 5, 8, 1, 4, 7}
8 · {0, 1, …, 9} = {0, 8, 6, 4, 2, 0, 8, 6, 4}

Multiplying by 3 is reversible, but 8 isn’t
Big difference from integers, reals, rationals, etc.
3 has a multiplicative inverse, but 8 doesn’t

Finding the multiplicative inverse is easy
But we won’t cover it here
Euclid’s algorithm in chapter 7

3-1 = 7
x·3·7 = (x·21) mod 10 = ((x mod 10) · (21 mod 10)) mod 10 =
x mod 10
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Modular arithmetic:
multiplicative inverses

When does a multiplicative inverse exist?
When the multiplier, x, is relatively prime to the number of 
elements, n.

GCD(x, n) = 1
For n = 10,

x = {1, 3, 7, 9} are the only values that give a GCD of 1
Only multipliers with multiplicative inverses: {1, 7, 3, 9}

How many numbers less than n are relatively prime 
to n?

The answer is Euler’s totient function, φ(n)
For a prime, φ(p) = p - 1
For a product of 2 primes, φ(pq) = pq - p - q + 1 = (p-1)(q-1)
These are the 2 relevant cases for chapter 6
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Modular arithmetic: 
exponentiation

37 = 2187 = 7 mod 10
Taking remainder earlier gives same result

37 = 3334 = 7·1 = 7
Construct xy table, with exponents from 1 to 
12

Note that xn = xn+4 mod 10
Fact: xy mod n = xy mod φ(n) mod n

For n prime or product of distinct primes (no p2)
If y = 1 mod φ(n)

xy = x mod n (useful fact for RSA algorithm)
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RSA
Inventors Rivest, Shamir, and Adleman
Public key algorithm
Variable key length, commonly 512 b
Variable block size

Plaintext shorter than key
Ciphertext same length as key

Much slower than DES and most secret key 
algorithms

Commonly used for exchanging a secret key (e.g., for DES)
With no pre-shared secret
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RSA algorithm: Key generation
Choose 2 large, secret, primes, p and q

Around 256 bits each
n = pq

Given n, it is impractical to find p and q
Public key <e, n>

Choose e (it can be small) that is relatively prime to φ(n)
You know φ(n) = (p-1)(q-1)

But others would need to do a brute force search

Private key <d, n>
Find d = e-1 mod φ(n) 

Easy only if you know φ(n)
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RSA algorithm:
encryption / decryption

Encrypt
c = me mod n (where m < n)

Decrypt
cd = mde mod n = m1 mod n
Since de = 1 mod φ(n)

Sign
s = md mod n

Verify
se mod n = mde mod n = m1 mod n
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RSA example
p = 11, q = 17
e = 3 (verify compatible with φ(n))
d = 107

Easy to find with Euclid’s algorithm (chapter 7)
m = 127
Calculate c (172)
Calculate m from c (indeed 127)

How can this be done efficiently?
Do we really need to calculate 172107 ??!!
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Generating RSA keys
Can be expensive (a few minutes)

But must be feasible
Choose p and q randomly and test for 
primality

Can get very high probability without much work
The odds are against us on any 1 number

Probability of random n being prime is about 1/(ln n)
Linear increase in ln n with length of prime

About 1/21 for numbers around 230

About 1/210 for numbers around 2300
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Generating RSA keys:
primality tests

Fermat’s Little Theorem
For a < p, ap-1 = 1 mod p
It can happen for non-primes for some a’s, but rare

About 1 in 1013 chance for hundred-digit p
So, try a few a’s and make sure you get 1 for all

Carmichael numbers (the main type of pseudoprime) will 
give 1 for all a’s, but they are not prime

Only 585,355 Carmichael numbers less than 1017

There are even better algorithms
2006 standard is Miller and Rabin’s algorithm (§6.3.4.2.1)
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RSA: Choosing d and e
GCD((p-1)(q-1), e) = 1
Select e at random and test for relative 
primarily
Or, Choose e and then select p and q 
for relative primality

Certain choices of e will make public key 
computations easier without sacrificing 
security
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RSA: 3 is the smallest possible e
2 does not work since (p-1)(q-1) is even
Encryption only needs 2 multiplies!
Weaknesses (can work around)

Short message, c = m3 < n, take 3√c
Pad short messages, usually with random number

Encrypting to 3 recipients
If you know the 3 keys (they are public!) and ciphertext, can compute m3 mod 
n1n2n3

Method in chapter 7 (Chinese Remainder Theorem)
Simple cube root

Padding each message uniquely (even with user ID) will solve this problem
Need GCD((p-1)(q-1), 3) = 1

GCD(p-1, 3) = 1 and GCD(q-1, 3) = 1
p and q must be 2 mod 3

1 would defeat GCD
0 would be non-prime
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RSA: 65537 is another common e

65537 = 216+1
Largest known Fermat prime (2^2n+1)
Total of 17 multiplies to exponentiate

Expect about 384 multiplies for random 
acceptable 256-bit e

And (on the order of) that many integer divisions

Avoids most problems with 3
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PKCS: Public-Key Cryptography 
Standard

Standards including message formats for applying 
RSA for encryption and signing
Random padding for encryption

Built-in workarounds to problems with e = 3
Signing

Done on message digest / hash
Generally too expensive for entire message

Digest type (hash function) is part of signed quantity,
so attacker cannot attach your signature
to a different (fake) message
using a weaker hash (e.g., a compromised one)
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Diffie-Hellman
Oldest PK system still in use
Agree on a shared, secret key using 
only public communication channels

Does not provide authentication
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Diffie-Hellman
Agree on p (large prime)
Agree on g < p

g must be a “primitive root” of p
g1...gp-1 are a permutation of 1...p-1

There are φ(φ(p)) = φ(p-1) choices
2 or 3 often works

No direct way to calculate
But there are more efficient methods than 
searching all primes
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Diffie-Hellman
Alice picks SA and Bob picks SB at random 
(512 bits)
Alice computes TA and Bob computes TB

Ts are exchanged
Compute shared secret, K
Everyone knows the Ts

Not enough to compute K
T → S is the “discrete logarithm problem”, and 
mathematicians haven’t solved it

mod

mod
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A
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T g p
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B AK T p T p g= = =
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Man-in-the-Middle Attack
Diffie-Hellman has no authentication
An active attacker between Alice and Bob

who can intercept and rewrite the communication
could share a key with each of them
and decrypt/re-encrypt the traffic in each direction

Still secure against passive attack


