
SE4920-Lecture 6 3/17/2006

© Eric A. Durant, PhD 1

1

SE-4920: Lecture 6
Introduction to cryptography

Reading
Chapter 2

Today’s Outcomes
Define common cryptography terms
Discuss the effect of processing power on the effectiveness
of cryptography
Explain the meaning of and relationship between the 3 basic
classes of cryptographic attacks: ciphertext only, known
plaintext, chosen plaintext
Discuss the similarities and differences among the 3 basic
types of cryptographic functions: (0-, 1-, and 2-key): hash,
secret key, public key

2

What is cryptography?
Cryptography = secret writing (Greek)

Temporarily (over network, or storage)
mangle a message

Main use = Confidentiality
Can also provide

Integrity checking
Authentication

3

Terms and overview
Plaintext – original message
Ciphertext – mangled information
Encryption – producing ciphertext from
plaintext
Decryption – the reverse of encryption
Key – (usually) secret value that allows the
same algorithm to be used securely by
millions of people (e.g., combination lock)

plaintext ciphertext plaintext
encryption decryption

SE4920-Lecture 6 3/17/2006

© Eric A. Durant, PhD 2

4

Computational difficulty
Encryption/decryption should be fast for
people who know the key
And unbearably slow for people who don’t
Combination lock

Adding a digit
Increases unlocking time linearly if you know the code:
Θ(N)
But exponentially if you don’t: Θ(2N)

Good news
Faster computers make larger N feasible

Rapidly increasing the divide between user and attacker

5

Simple secret codes
Caesar cipher

Shift letters in alphabet by secret amount between 0 and 25
(cyclic order, ‘a’ follows ‘z’):

E(“Code”, 2) = “Eqfg”
26 possibilities (keys)
Easily broken with enough text by trying all keys (recognizable
plaintext attack)

Monoalphabetic cipher
“Mono” – each letter is always replaced with the same
(“mono” = “one”) letter
26! ≈ 4e26 (a lot of possible keys)
Still easy to cryptanalyze

E.g., character frequency analysis (‘e’ vs. ‘q’, etc.)

6

Basic attacks against
cryptographic schemes

Generally want to be secure against all
But security against the more basic attacks
may suffice in some cases

Ciphertext only (most basic)
Known plaintext
Chosen plaintext (most sophisticated)

SE4920-Lecture 6 3/17/2006

© Eric A. Durant, PhD 3

7

Ciphertext only
Encrypted data captured from network,
storage, etc.

May accumulate and store over time (need
“enough” data)

Offline attack – try all keys?
Stop when the result makes sense?

“Recognizable plaintext attack”
Limited keyspace problems

What if key = f(password)?
Password is one of ~10000 ≈ 213 dictionary words
Or one of ~608 ≈ 247 random strings?

8

Known plaintext
Capture some <plaintext, ciphertext> pairs

Maybe an encrypted message later became public

Defeats monoalphabetic and Caesar ciphers
And some other methods

Do not use algorithms vulnerable to known
plaintext

If plaintext might ever become known

9

Chosen plaintext
When you can get the system to encrypt something
for you
Again, Caesar and monoalphabetic are vulnerable to
this
Also, vulnerable to message guessing

Guess possible messages m1 m2 m3

Get E(m1), E(m2), E(m3)
Look for match with intercepted value

There are solutions to this
E.g., make E() a function of something that changes with
each message (time, nonce)

SE4920-Lecture 6 3/17/2006

© Eric A. Durant, PhD 4

10

The 3 types of cryptographic
functions

Secret key cryptography
One, shared key

Public key cryptography
Keys come in pairs, a private half and a
public half

Hash function
Zero keys (algorithm only)

11

Secret key cryptography
Encryption and decryption based on a
pre-shared secret
Also called “symmetric” (since the same
key is used on both sides) or
“conventional” cryptography

plaintext ciphertext
encryption

ciphertext plaintextdecryption

key

12

Using secret key cryptography
Transmit over an insecure channel (confidentiality)
Secure storage on insecure media (just another type
of channel)

Danger of losing the key
Authentication

Prove you can encrypt a random number with the shared
secret (and thus you know the secret)
Weakness of basic exchange?

Extending the basic checksum / CRC, which are
easily replaced by an attacker

Cryptographic checksum / message authentication code
(MAC)
f(message, secret), typically 48 bits or longer

SE4920-Lecture 6 3/17/2006

© Eric A. Durant, PhD 5

13

Public key cryptography
Also called asymmetric cryptography, since a
different key is used on each side
Newest form, first published in 1976
Keys come in mathematically related pairs

Public key – e – normally for encrypting
Private key – d – normally for decrypting

Many advantages over private key, including
No shared secrets – keep your d private, but tell
the world what your e is

14

plaintext ciphertext
encryption

ciphertext plaintextdecryption

public key
private key

Operation of public key
cryptography

Much slower than secret key, solution...
Often generate a random secret key
Protect it with public/private key
Protect data with the random secret

15

Uses of public key cryptography
Transmit over an insecure channel

No pre-shared secret, but need to trust that you have the right
public key (Chapter 15)

Secure storage on insecure media
Advantage over secret key: encrypt for someone else (and only
them)

Authentication
E.g., prove I know my private d

You send me c = {r}e
Only I can perform D(c, d) = r and tell you your random r

Digital signatures: [m]d = f(m, d)
Proves

Who generated message (only one owner – no shared secret)
That the message was not modified

Together: non-repudiation (prove who placed the order, cf. secret)

SE4920-Lecture 6 3/17/2006

© Eric A. Durant, PhD 6

16

Hash algorithms
h: potentially long message → fixed length
(short) number (e.g., 64 or 128 bits)
Cryptographic hash properties

Easy to compute h(m) for all m
No better way to find an m that generates a given
h(m) than to do a random search
Infeasible to find m1 and m2 such that h(m1) =
h(m2)

Although, many such pairs must exist
The messages can be arbitrarily long

17

Uses of hash algorithms
Password hashing

Store the hash for comparison, not the password
Message integrity

Problem: How do you know that an attacker didn’t just
regenerate the hash when he modified the message?
Solution: keyed hash: Transmit h(m|s)|m

Message fingerprint / message digest
Detect changes to file by securely storing (e.g., file cabinet,
ROM) and occasionally verifying hash

Efficient digital signatures
Use public key to sign a hash of a message

