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CS-4920: Lecture 7 
Secret key cryptography 

 Reading 
 Chapter 3 (pp. 59-75, 92-93) 

 Today’s Outcomes 
 Discuss block and key length issues related to 

secret key cryptography 
 Define several terms related to secret key 

cryptography 
 Describe and evaluate DES, focusing on both 

design and implementation issues 
 Explain some uses of one-time pads with RC4 as a 

representative example 

2 

Block encryption 

 Block algorithms 
 Take a fixed-length message block... size? 

 Short block problem (e.g., monoalphabetic cipher) 
 Too easy to make <plaintext, ciphertext> table 

 64-bit blocks are commonly used 

 Longer is merely inconvenient, once security is 
established 

 Take a fixed-length key 
 56 bits for DES, 128 for IDEA, typically ≥64 bits 

 Generate a ciphertext block equal in length to the 
input block 
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Determining the 
plaintext→ciphertext mapping 

 Want a random-looking mapping 
 So a few <pt, ct> pairs cannot be used to infer the key 

without exhaustive search 
 Consider Caesar cipher vs. monoalphabetic 

 For 64 bits, there are 264! 1-to-1 random mappings 
 Nearly 270 bits needed – this key is too long 

 Random-looking vs. random, various tests... 
 Single bit input change results in an apparently unrelated 

output 
 Roughly half of the bits are different 

 We can get random-looking output with much 
shorter, practical keys... 
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Evading cryptanalysis by 
spreading input effects 

 Substitution 
 A separate output for each input 

 Random tables reasonable for 8 bits (28 entries) 
 But not 64 bits (264 entries) 

 Takes (nearly) k∙2k bits 
 Bits per entry × entries 

 Permutation 
 Spreads the influence of bits throughout the block 

 Let LSBs affect any bits, not just other LSBs 

 Random, reversible, reordering 

 Takes (nearly) k∙log2k bits 
 Entries × cost to encode a position 
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A round: substitution followed by 
permutation 

 Choose a reasonable number of rounds 

 Too few: can see patterns and attack 

 Too many: inefficient 

 Reversible 

 Everything done can be undone 

 If we know the permutations and substitutions 
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General block 
encryption, not 

DES in particular 
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DES (Data Encryption Standard) 

 1977 – National Bureau of Standards (now NIST) 

 56-bit key, 64-bit I/O blocks 

 Key appears as 64 bits 
 But LSB of each byte is an odd-parity bit 

 Consensus is no practical value to this use of parity 

 Reasonable encryption speeds on standard CPUs 
 Roughly 60 kB/s per 1000 MIP, varying with architecture and 

implementation 

 Much more efficient with custom hardware 
 Some features of DES do not add to security, but make 

software implementations inefficient 
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Breaking DES 

 1977 
 ~$20M hardware to find a key in 12 hours 

 1998 
 <$250k to find a key in 4.5 days 

 Triple DES (Chapter 4) 
 E → EDE, D → DED 

 “Keying option 2,” K1=K3  
 Believed to be 256 times harder to break 
 Prevents “meet-in-the-middle” attack 
 Secure for foreseeable future 

 2010 
 112 → 80-bit chosen plaintext attack per NIST 
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DES Overview 

 64-bit input through fixed permutation 

 56-bit key generates 16, 48-bit keys for 
16 rounds 

 Round processing × 16 
 64-bit input and output, 48-bit key 

 Swap halves 

 Final permutation (inverse of initial) 

 Decryption: just reverse the steps 
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Initial and final permutations 

 64-bit to 64-bit 

 See book, pages 66-67 

 Do not add security value 

 Since they are fixed and occur at the very 
beginning and end 

 Just to make software implementation on a 
general CPU less efficient? 
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Generating the per-round keys 

 56-bit key is passed through a fixed permutation 
 Again, no security value 

 The two 28-bit halves are called C0 and D0 

 Rounds 1-16 
 Left rotate C and D each by 1 (round 1, 2, 9, 16) or 2 bits 

 The rotations go full circle (1∙4 + 2(16-4) = 28) 

 C and D are permuted (with 4 bits discarded) to generate 
the 2 halves of the 48-bit round key 

 These permutations are believed to have security value 
 Less locality in the round keys 
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DES round (see Figure) 

 Block divided into 2, 32-bit halves 

 Ln and Rn 

 Ln+1 = Rn 

 Rn+1 = Ln ⊕ mangler(Rn, Kn) 

 Decryption: reverse process 

 Need Ln. Reverse mangler? No (elegant design)... 

 Use, A ⊕ B ⊕ B = A 

 Ln = Rn+1 ⊕ mangler(Rn, Kn) 

 Rn and Kn are known 
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The mangler 
 Purpose: scramble the data based on the round key 
 Also called the Feistel function 
 Inputs: Rn (32-bit data block), Kn (48-bit round key) 
 Output: Mangled 32-bit block 
 Processing 

 Expand Rn to 48 bits 
 Take 8, 6-bit chunks that overlap by 2 bits 

 bits -1 through 4, 3 through 8, ... 

 (Expanded Rn) ⊕ Kn 

 Map each 6-bit chunk to a 4-bit chunk 
 Separate table for each of the 8 chunks (S-boxes) 

 Center 4 bits are based on the data 
 2 edge bits select 1 of 4 subtables for each chunk 

 Permute the final 32-bit quantity 
 Security value: bit spreading for next round, good randomness property 
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Weak and semi-weak keys 

 4 of the 256 keys are weak 

 All 0s or 1s in C0 and D0 

 They are their own inverses 

 Encrypting with a key is the same as decrypting 
with its inverse 

 12 more are semi-weak 

 Alternating 1010 or 0101 in C0 and/or D0 

 The inverse of each is in the set of 12 
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DES Issues 

 Design process was secret 
 Were the S-boxes chosen to be weak? 

 1991: Swapping box 3 with 7 makes DES 
about an order of magnitude less secure 
 Admittedly specific, unlikely attack 

 To address this “secret weakness” concern 
 Many cryptographic algorithms choose their 

“random” numbers based on demonstrable 
methods 

 E.g., digits of π 
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RC4 
 One-time pad – a long (pseudo)random string used to encrypt a 

message 
 Use one time – theoretically very secure 
 But, how do we generate? 

 Pseudorandom 
 Passes many/all tests for randomness 

 Distribution, correlation with previous samples (overall or of particular 
bits), ... 

 Generated by algorithm – predictable if you know algorithm/key 

 Stream cipher – apply one-time pad to a stream of plaintext 
 RC4 (page 93) 

 Simple algorithm generating a 1-time pad based on a key of 1 to 
256 bytes 

 258 bytes of state information 
 Also useful for generating pseudorandom numbers 


