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CS-4920: Lecture 7 
Secret key cryptography 

 Reading 
 Chapter 3 (pp. 59-75, 92-93) 

 Today’s Outcomes 
 Discuss block and key length issues related to 

secret key cryptography 
 Define several terms related to secret key 

cryptography 
 Describe and evaluate DES, focusing on both 

design and implementation issues 
 Explain some uses of one-time pads with RC4 as a 

representative example 
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Block encryption 

 Block algorithms 
 Take a fixed-length message block... size? 

 Short block problem (e.g., monoalphabetic cipher) 
 Too easy to make <plaintext, ciphertext> table 

 64-bit blocks are commonly used 

 Longer is merely inconvenient, once security is 
established 

 Take a fixed-length key 
 56 bits for DES, 128 for IDEA, typically ≥64 bits 

 Generate a ciphertext block equal in length to the 
input block 
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Determining the 
plaintext→ciphertext mapping 

 Want a random-looking mapping 
 So a few <pt, ct> pairs cannot be used to infer the key 

without exhaustive search 
 Consider Caesar cipher vs. monoalphabetic 

 For 64 bits, there are 264! 1-to-1 random mappings 
 Nearly 270 bits needed – this key is too long 

 Random-looking vs. random, various tests... 
 Single bit input change results in an apparently unrelated 

output 
 Roughly half of the bits are different 

 We can get random-looking output with much 
shorter, practical keys... 
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Evading cryptanalysis by 
spreading input effects 

 Substitution 
 A separate output for each input 

 Random tables reasonable for 8 bits (28 entries) 
 But not 64 bits (264 entries) 

 Takes (nearly) k∙2k bits 
 Bits per entry × entries 

 Permutation 
 Spreads the influence of bits throughout the block 

 Let LSBs affect any bits, not just other LSBs 

 Random, reversible, reordering 

 Takes (nearly) k∙log2k bits 
 Entries × cost to encode a position 
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A round: substitution followed by 
permutation 

 Choose a reasonable number of rounds 

 Too few: can see patterns and attack 

 Too many: inefficient 

 Reversible 

 Everything done can be undone 

 If we know the permutations and substitutions 
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General block 
encryption, not 

DES in particular 
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DES (Data Encryption Standard) 

 1977 – National Bureau of Standards (now NIST) 

 56-bit key, 64-bit I/O blocks 

 Key appears as 64 bits 
 But LSB of each byte is an odd-parity bit 

 Consensus is no practical value to this use of parity 

 Reasonable encryption speeds on standard CPUs 
 Roughly 60 kB/s per 1000 MIP, varying with architecture and 

implementation 

 Much more efficient with custom hardware 
 Some features of DES do not add to security, but make 

software implementations inefficient 

8 

Breaking DES 

 1977 
 ~$20M hardware to find a key in 12 hours 

 1998 
 <$250k to find a key in 4.5 days 

 Triple DES (Chapter 4) 
 E → EDE, D → DED 

 “Keying option 2,” K1=K3  
 Believed to be 256 times harder to break 
 Prevents “meet-in-the-middle” attack 
 Secure for foreseeable future 

 2010 
 112 → 80-bit chosen plaintext attack per NIST 
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DES Overview 

 64-bit input through fixed permutation 

 56-bit key generates 16, 48-bit keys for 
16 rounds 

 Round processing × 16 
 64-bit input and output, 48-bit key 

 Swap halves 

 Final permutation (inverse of initial) 

 Decryption: just reverse the steps 
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Initial and final permutations 

 64-bit to 64-bit 

 See book, pages 66-67 

 Do not add security value 

 Since they are fixed and occur at the very 
beginning and end 

 Just to make software implementation on a 
general CPU less efficient? 
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Generating the per-round keys 

 56-bit key is passed through a fixed permutation 
 Again, no security value 

 The two 28-bit halves are called C0 and D0 

 Rounds 1-16 
 Left rotate C and D each by 1 (round 1, 2, 9, 16) or 2 bits 

 The rotations go full circle (1∙4 + 2(16-4) = 28) 

 C and D are permuted (with 4 bits discarded) to generate 
the 2 halves of the 48-bit round key 

 These permutations are believed to have security value 
 Less locality in the round keys 
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DES round (see Figure) 

 Block divided into 2, 32-bit halves 

 Ln and Rn 

 Ln+1 = Rn 

 Rn+1 = Ln ⊕ mangler(Rn, Kn) 

 Decryption: reverse process 

 Need Ln. Reverse mangler? No (elegant design)... 

 Use, A ⊕ B ⊕ B = A 

 Ln = Rn+1 ⊕ mangler(Rn, Kn) 

 Rn and Kn are known 
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The mangler 
 Purpose: scramble the data based on the round key 
 Also called the Feistel function 
 Inputs: Rn (32-bit data block), Kn (48-bit round key) 
 Output: Mangled 32-bit block 
 Processing 

 Expand Rn to 48 bits 
 Take 8, 6-bit chunks that overlap by 2 bits 

 bits -1 through 4, 3 through 8, ... 

 (Expanded Rn) ⊕ Kn 

 Map each 6-bit chunk to a 4-bit chunk 
 Separate table for each of the 8 chunks (S-boxes) 

 Center 4 bits are based on the data 
 2 edge bits select 1 of 4 subtables for each chunk 

 Permute the final 32-bit quantity 
 Security value: bit spreading for next round, good randomness property 
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Weak and semi-weak keys 

 4 of the 256 keys are weak 

 All 0s or 1s in C0 and D0 

 They are their own inverses 

 Encrypting with a key is the same as decrypting 
with its inverse 

 12 more are semi-weak 

 Alternating 1010 or 0101 in C0 and/or D0 

 The inverse of each is in the set of 12 
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DES Issues 

 Design process was secret 
 Were the S-boxes chosen to be weak? 

 1991: Swapping box 3 with 7 makes DES 
about an order of magnitude less secure 
 Admittedly specific, unlikely attack 

 To address this “secret weakness” concern 
 Many cryptographic algorithms choose their 

“random” numbers based on demonstrable 
methods 

 E.g., digits of π 
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RC4 
 One-time pad – a long (pseudo)random string used to encrypt a 

message 
 Use one time – theoretically very secure 
 But, how do we generate? 

 Pseudorandom 
 Passes many/all tests for randomness 

 Distribution, correlation with previous samples (overall or of particular 
bits), ... 

 Generated by algorithm – predictable if you know algorithm/key 

 Stream cipher – apply one-time pad to a stream of plaintext 
 RC4 (page 93) 

 Simple algorithm generating a 1-time pad based on a key of 1 to 
256 bytes 

 258 bytes of state information 
 Also useful for generating pseudorandom numbers 


