
CS4920-Lecture 7 4/1/2015

© Eric Durant, PhD, MBA 1

1

CS-4920: Lecture 7
Secret key cryptography

 Reading
 Chapter 3 (pp. 59-75, 92-93)

 Today’s Outcomes
 Discuss block and key length issues related to

secret key cryptography
 Define several terms related to secret key

cryptography
 Describe and evaluate DES, focusing on both

design and implementation issues
 Explain some uses of one-time pads with RC4 as a

representative example

2

Block encryption

 Block algorithms
 Take a fixed-length message block... size?

 Short block problem (e.g., monoalphabetic cipher)
 Too easy to make <plaintext, ciphertext> table

 64-bit blocks are commonly used

 Longer is merely inconvenient, once security is
established

 Take a fixed-length key
 56 bits for DES, 128 for IDEA, typically ≥64 bits

 Generate a ciphertext block equal in length to the
input block

3

Determining the
plaintext→ciphertext mapping

 Want a random-looking mapping
 So a few <pt, ct> pairs cannot be used to infer the key

without exhaustive search
 Consider Caesar cipher vs. monoalphabetic

 For 64 bits, there are 264! 1-to-1 random mappings
 Nearly 270 bits needed – this key is too long

 Random-looking vs. random, various tests...
 Single bit input change results in an apparently unrelated

output
 Roughly half of the bits are different

 We can get random-looking output with much
shorter, practical keys...

CS4920-Lecture 7 4/1/2015

© Eric Durant, PhD, MBA 2

4

Evading cryptanalysis by
spreading input effects

 Substitution
 A separate output for each input

 Random tables reasonable for 8 bits (28 entries)
 But not 64 bits (264 entries)

 Takes (nearly) k∙2k bits
 Bits per entry × entries

 Permutation
 Spreads the influence of bits throughout the block

 Let LSBs affect any bits, not just other LSBs

 Random, reversible, reordering

 Takes (nearly) k∙log2k bits
 Entries × cost to encode a position

5

A round: substitution followed by
permutation

 Choose a reasonable number of rounds

 Too few: can see patterns and attack

 Too many: inefficient

 Reversible

 Everything done can be undone

 If we know the permutations and substitutions

6

General block
encryption, not

DES in particular

CS4920-Lecture 7 4/1/2015

© Eric Durant, PhD, MBA 3

7

DES (Data Encryption Standard)

 1977 – National Bureau of Standards (now NIST)

 56-bit key, 64-bit I/O blocks

 Key appears as 64 bits
 But LSB of each byte is an odd-parity bit

 Consensus is no practical value to this use of parity

 Reasonable encryption speeds on standard CPUs
 Roughly 60 kB/s per 1000 MIP, varying with architecture and

implementation

 Much more efficient with custom hardware
 Some features of DES do not add to security, but make

software implementations inefficient

8

Breaking DES

 1977
 ~$20M hardware to find a key in 12 hours

 1998
 <$250k to find a key in 4.5 days

 Triple DES (Chapter 4)
 E → EDE, D → DED

 “Keying option 2,” K1=K3
 Believed to be 256 times harder to break
 Prevents “meet-in-the-middle” attack
 Secure for foreseeable future

 2010
 112 → 80-bit chosen plaintext attack per NIST

9

DES Overview

 64-bit input through fixed permutation

 56-bit key generates 16, 48-bit keys for
16 rounds

 Round processing × 16
 64-bit input and output, 48-bit key

 Swap halves

 Final permutation (inverse of initial)

 Decryption: just reverse the steps

CS4920-Lecture 7 4/1/2015

© Eric Durant, PhD, MBA 4

10

11

Initial and final permutations

 64-bit to 64-bit

 See book, pages 66-67

 Do not add security value

 Since they are fixed and occur at the very
beginning and end

 Just to make software implementation on a
general CPU less efficient?

12

Generating the per-round keys

 56-bit key is passed through a fixed permutation
 Again, no security value

 The two 28-bit halves are called C0 and D0

 Rounds 1-16
 Left rotate C and D each by 1 (round 1, 2, 9, 16) or 2 bits

 The rotations go full circle (1∙4 + 2(16-4) = 28)

 C and D are permuted (with 4 bits discarded) to generate
the 2 halves of the 48-bit round key

 These permutations are believed to have security value
 Less locality in the round keys

CS4920-Lecture 7 4/1/2015

© Eric Durant, PhD, MBA 5

13

14

DES round (see Figure)

 Block divided into 2, 32-bit halves

 Ln and Rn

 Ln+1 = Rn

 Rn+1 = Ln ⊕ mangler(Rn, Kn)

 Decryption: reverse process

 Need Ln. Reverse mangler? No (elegant design)...

 Use, A ⊕ B ⊕ B = A

 Ln = Rn+1 ⊕ mangler(Rn, Kn)

 Rn and Kn are known

15

CS4920-Lecture 7 4/1/2015

© Eric Durant, PhD, MBA 6

16

The mangler
 Purpose: scramble the data based on the round key
 Also called the Feistel function
 Inputs: Rn (32-bit data block), Kn (48-bit round key)
 Output: Mangled 32-bit block
 Processing

 Expand Rn to 48 bits
 Take 8, 6-bit chunks that overlap by 2 bits

 bits -1 through 4, 3 through 8, ...

 (Expanded Rn) ⊕ Kn

 Map each 6-bit chunk to a 4-bit chunk
 Separate table for each of the 8 chunks (S-boxes)

 Center 4 bits are based on the data
 2 edge bits select 1 of 4 subtables for each chunk

 Permute the final 32-bit quantity
 Security value: bit spreading for next round, good randomness property

17

Weak and semi-weak keys

 4 of the 256 keys are weak

 All 0s or 1s in C0 and D0

 They are their own inverses

 Encrypting with a key is the same as decrypting
with its inverse

 12 more are semi-weak

 Alternating 1010 or 0101 in C0 and/or D0

 The inverse of each is in the set of 12

18

DES Issues

 Design process was secret
 Were the S-boxes chosen to be weak?

 1991: Swapping box 3 with 7 makes DES
about an order of magnitude less secure
 Admittedly specific, unlikely attack

 To address this “secret weakness” concern
 Many cryptographic algorithms choose their

“random” numbers based on demonstrable
methods

 E.g., digits of π

CS4920-Lecture 7 4/1/2015

© Eric Durant, PhD, MBA 7

19

RC4
 One-time pad – a long (pseudo)random string used to encrypt a

message
 Use one time – theoretically very secure
 But, how do we generate?

 Pseudorandom
 Passes many/all tests for randomness

 Distribution, correlation with previous samples (overall or of particular
bits), ...

 Generated by algorithm – predictable if you know algorithm/key

 Stream cipher – apply one-time pad to a stream of plaintext
 RC4 (page 93)

 Simple algorithm generating a 1-time pad based on a key of 1 to
256 bytes

 258 bytes of state information
 Also useful for generating pseudorandom numbers

