
CS4920-Lecture 7 4/1/2015

© Eric Durant, PhD, MBA 1

1

CS-4920: Lecture 7
Secret key cryptography

 Reading
 Chapter 3 (pp. 59-75, 92-93)

 Today’s Outcomes
 Discuss block and key length issues related to

secret key cryptography
 Define several terms related to secret key

cryptography
 Describe and evaluate DES, focusing on both

design and implementation issues
 Explain some uses of one-time pads with RC4 as a

representative example

2

Block encryption

 Block algorithms
 Take a fixed-length message block... size?

 Short block problem (e.g., monoalphabetic cipher)
 Too easy to make <plaintext, ciphertext> table

 64-bit blocks are commonly used

 Longer is merely inconvenient, once security is
established

 Take a fixed-length key
 56 bits for DES, 128 for IDEA, typically ≥64 bits

 Generate a ciphertext block equal in length to the
input block

3

Determining the
plaintext→ciphertext mapping

 Want a random-looking mapping
 So a few <pt, ct> pairs cannot be used to infer the key

without exhaustive search
 Consider Caesar cipher vs. monoalphabetic

 For 64 bits, there are 264! 1-to-1 random mappings
 Nearly 270 bits needed – this key is too long

 Random-looking vs. random, various tests...
 Single bit input change results in an apparently unrelated

output
 Roughly half of the bits are different

 We can get random-looking output with much
shorter, practical keys...

CS4920-Lecture 7 4/1/2015

© Eric Durant, PhD, MBA 2

4

Evading cryptanalysis by
spreading input effects

 Substitution
 A separate output for each input

 Random tables reasonable for 8 bits (28 entries)
 But not 64 bits (264 entries)

 Takes (nearly) k∙2k bits
 Bits per entry × entries

 Permutation
 Spreads the influence of bits throughout the block

 Let LSBs affect any bits, not just other LSBs

 Random, reversible, reordering

 Takes (nearly) k∙log2k bits
 Entries × cost to encode a position

5

A round: substitution followed by
permutation

 Choose a reasonable number of rounds

 Too few: can see patterns and attack

 Too many: inefficient

 Reversible

 Everything done can be undone

 If we know the permutations and substitutions

6

General block
encryption, not

DES in particular

CS4920-Lecture 7 4/1/2015

© Eric Durant, PhD, MBA 3

7

DES (Data Encryption Standard)

 1977 – National Bureau of Standards (now NIST)

 56-bit key, 64-bit I/O blocks

 Key appears as 64 bits
 But LSB of each byte is an odd-parity bit

 Consensus is no practical value to this use of parity

 Reasonable encryption speeds on standard CPUs
 Roughly 60 kB/s per 1000 MIP, varying with architecture and

implementation

 Much more efficient with custom hardware
 Some features of DES do not add to security, but make

software implementations inefficient

8

Breaking DES

 1977
 ~$20M hardware to find a key in 12 hours

 1998
 <$250k to find a key in 4.5 days

 Triple DES (Chapter 4)
 E → EDE, D → DED

 “Keying option 2,” K1=K3
 Believed to be 256 times harder to break
 Prevents “meet-in-the-middle” attack
 Secure for foreseeable future

 2010
 112 → 80-bit chosen plaintext attack per NIST

9

DES Overview

 64-bit input through fixed permutation

 56-bit key generates 16, 48-bit keys for
16 rounds

 Round processing × 16
 64-bit input and output, 48-bit key

 Swap halves

 Final permutation (inverse of initial)

 Decryption: just reverse the steps

CS4920-Lecture 7 4/1/2015

© Eric Durant, PhD, MBA 4

10

11

Initial and final permutations

 64-bit to 64-bit

 See book, pages 66-67

 Do not add security value

 Since they are fixed and occur at the very
beginning and end

 Just to make software implementation on a
general CPU less efficient?

12

Generating the per-round keys

 56-bit key is passed through a fixed permutation
 Again, no security value

 The two 28-bit halves are called C0 and D0

 Rounds 1-16
 Left rotate C and D each by 1 (round 1, 2, 9, 16) or 2 bits

 The rotations go full circle (1∙4 + 2(16-4) = 28)

 C and D are permuted (with 4 bits discarded) to generate
the 2 halves of the 48-bit round key

 These permutations are believed to have security value
 Less locality in the round keys

CS4920-Lecture 7 4/1/2015

© Eric Durant, PhD, MBA 5

13

14

DES round (see Figure)

 Block divided into 2, 32-bit halves

 Ln and Rn

 Ln+1 = Rn

 Rn+1 = Ln ⊕ mangler(Rn, Kn)

 Decryption: reverse process

 Need Ln. Reverse mangler? No (elegant design)...

 Use, A ⊕ B ⊕ B = A

 Ln = Rn+1 ⊕ mangler(Rn, Kn)

 Rn and Kn are known

15

CS4920-Lecture 7 4/1/2015

© Eric Durant, PhD, MBA 6

16

The mangler
 Purpose: scramble the data based on the round key
 Also called the Feistel function
 Inputs: Rn (32-bit data block), Kn (48-bit round key)
 Output: Mangled 32-bit block
 Processing

 Expand Rn to 48 bits
 Take 8, 6-bit chunks that overlap by 2 bits

 bits -1 through 4, 3 through 8, ...

 (Expanded Rn) ⊕ Kn

 Map each 6-bit chunk to a 4-bit chunk
 Separate table for each of the 8 chunks (S-boxes)

 Center 4 bits are based on the data
 2 edge bits select 1 of 4 subtables for each chunk

 Permute the final 32-bit quantity
 Security value: bit spreading for next round, good randomness property

17

Weak and semi-weak keys

 4 of the 256 keys are weak

 All 0s or 1s in C0 and D0

 They are their own inverses

 Encrypting with a key is the same as decrypting
with its inverse

 12 more are semi-weak

 Alternating 1010 or 0101 in C0 and/or D0

 The inverse of each is in the set of 12

18

DES Issues

 Design process was secret
 Were the S-boxes chosen to be weak?

 1991: Swapping box 3 with 7 makes DES
about an order of magnitude less secure
 Admittedly specific, unlikely attack

 To address this “secret weakness” concern
 Many cryptographic algorithms choose their

“random” numbers based on demonstrable
methods

 E.g., digits of π

CS4920-Lecture 7 4/1/2015

© Eric Durant, PhD, MBA 7

19

RC4
 One-time pad – a long (pseudo)random string used to encrypt a

message
 Use one time – theoretically very secure
 But, how do we generate?

 Pseudorandom
 Passes many/all tests for randomness

 Distribution, correlation with previous samples (overall or of particular
bits), ...

 Generated by algorithm – predictable if you know algorithm/key

 Stream cipher – apply one-time pad to a stream of plaintext
 RC4 (page 93)

 Simple algorithm generating a 1-time pad based on a key of 1 to
256 bytes

 258 bytes of state information
 Also useful for generating pseudorandom numbers

