
CS4920-Lecture 5 3/17/2014

© Eric A. Durant, PhD 1

1

CS-4920: Lecture 5
Developing Secure Software

Today’s Outcomes
Discuss the connection between defects and security
Identify several types of defects
Discuss the cost/schedule ramifications of defect reduction
State several benefits of managing defects throughout the 
SDLC
Discuss approaches to integrating secure development 
practices into Scrum

2

Software defects and security
Many defects are security problems
All security problems are defects

During requirements, design, 
implementation, ...

To do security well, it must be “built in” 
to the software development life cycle 
(SDLC)

As opposed to being “bolted on” later

3

Major Points
Defective software is seldom secure
Defective software is preventable
Reducing defects is less costly than 
responding to released vulnerabilities



CS4920-Lecture 5 3/17/2014

© Eric A. Durant, PhD 2

4

Defective software is seldom 
secure

Experienced developers still inject a lot of 
defects

During requirements, design, implementation, test
1 defect per every 7-10 lines of new/changed 
code!
Even with 99% removal, that’s 1-1.5 defects per 
kLOC
Jones’ study on released software showed 
typically 1-7 defects per new/changed kLOC

5

Relationship of defects and 
security problems

Nearly all vulnerabilities are caused by 
known defect types
Vast majority are are on top 10/25 lists 
updated by SANS, OWASP, and others

http://www.sans.org/top25-software-errors/
https://www.owasp.org/index.php/Top_10_20
13-Top_10
See also http://cve.mitre.org/

6

Types of defects
Sophisticated

Inadequate 
authentication
Invalid authorization
Incorrect use of 
cryptography
Failure to protect data
Failure to partition 
applications

Simple / most common
Declaration errors
Logic errors
Loop control errors
Failure to validate input
Interface specification 
errors
Configuration errors
Failure to understand 
simple security issues

Which of the basic security principles apply here?



CS4920-Lecture 5 3/17/2014

© Eric A. Durant, PhD 3

7

Is defective software unavoidable 
due to its complexity?

Numerous studies have shown that 
certain development processes 
drastically reduce defects.

Researchers and practitioners concur that 
this applies to security defects as well.
Security defects have their own character: 
generally not caught by use case (normal 
use) or basic functional requirements

8

How much does it cost?
Very little and sometimes less
How?

Processes make meeting schedule more likely
Schedule error reduced to 6%

Less time spent on repair / early repair is cheaper
4% of total time

78% resulting increase in productivity
Very good correlations between fewer defects and 
less schedule error [Jones]

9

Post-release costs also reduced

Producers
Creating, testing, and releasing patches
Bad press
Customer dissatisfaction
Legal action

Consumers
Testing and deployment
Downtime



CS4920-Lecture 5 3/17/2014

© Eric A. Durant, PhD 4

10

Two-pronged process approach

Defects managed throughout SDLC
Address security throughout SDLC

11

Managing defects throughout the 
SDLC

Managing = removal and measurement
Multiple defect removal points needed

Less propagation of defects
Easier to trace to root cause
Early warnings of process variance
More chances to catch an early defect
Common points:

Requirements, architectural analysis, design verification, 
design review
Code review, static code analysis
Unit test, penetration test, system test

12

Address security throughout 
SDLC

Understand common causes of vulnerabilities
Buffer overflows
SQL injection
Race conditions
Cross-site scripting

Unfortunate name, essentially unquoted HTML or script
Types: local, reflected, stored

But, is that enough?
One company has a 700-page document 
describing common causes...



CS4920-Lecture 5 3/17/2014

© Eric A. Durant, PhD 5

13

Augment understanding with best 
practices

Consider buffer overflow – what is the problem?
Overwrite stack (common exploit)
May happen inside library call

General principles to avoid the problem
Design: validate all input (use of custom types, etc.)
Verification: State machine (UML state chart)
Coding: checklists, static analysis (identify unsafe calls)
Testing: Fuzz test

Apply throughout the SDLC
These go back to many of our earlier principles

Risk analysis, defense in depth, application partitioning 
(least common mechanism?), least privilege

14

Scrum security challenges 
Product backlog doesn’t work well for security 
because it is not generally visible and within 
the client’s expertise

Proposal: addition of “security backlog” managed 
by “Security Master”: document risk, apply testing 
to new/selected features

Avoid disrupting sprint flow
Recognize and manage risk from the beginning
Training recognized as key by many sources

15

Process commonalities
Scrum/agile have commonalities with older 
processes such as TSP

Plan for security from the beginning
The self-directed team takes responsibility and 
requires decision making ability
Multiple defect removal points minimize cost
Training in security issues is critical
Adapt based on what’s working and what’s not



CS4920-Lecture 5 3/17/2014

© Eric A. Durant, PhD 6

16

References
Azham, Z., I. Ghani, and N. Ithnin. Security 
Backlog in Scrum Security Practices, 5th

Malaysian Conference in Software Engineering 
(MySec), IEEE, pp. 414-417, 2011.
Schoonover, Glenn. Enhancing Customer 
Security: Built-in versus Bolt-on, The DoD
Software Tech News, v8 i2, July 2005.
Jones, Capers. Software Assessments, 
Benchmarks, and Best Practices. Reading, MA: 
Addison-Wesley, 2000.


