CS4920-Lecture 5 3/17/2014

CS-4920: Lecture 5
Developing Secure Software

= Today’s Outcomes

= Discuss the connection between defects and security

= Identify several types of defects

= Discuss the cost/schedule ramifications of defect reduction

= State several benefits of managing defects throughout the
SDLC

= Discuss approaches to integrating secure development
practices into Scrum

i Software defects and security

= Many defects are security problems
= All security problems are defects
= During requirements, design,
implementation, ...
= To do security well, it must be “built in”
to the software development life cycle
(SDLC)

= As opposed to being “bolted on” later

Major Points

= Defective software is seldom secure
= Defective software is preventable

= Reducing defects is less costly than
responding to released vulnerabilities

© Eric A. Durant, PhD 1



CS4920-Lecture 5 3/17/2014

Defective software is seldom
secure

= Experienced developers still inject a lot of

defects

= During requirements, design, implementation, test

= 1 defect per every 7-10 lines of new/changed
code!

= Even with 99% removal, that's 1-1.5 defects per
kLoc

= Jones’ study on released software showed
typically 1-7 defects per new/changed kLOC

Relationship of defects and

i security problems

= Nearly all vulnerabilities are caused by
known defect types

= Vast majority are are on top 10/25 lists
updated by SANS, OWASP, and others
= http://www.sans.org/top25-software-errors/

= https://www.owasp.org/index.php/Top_10_20
13-Top_10
= See also http://cve.mitre.org/

i Types of defects

= Sophisticated = Simple / most common
= Inadequate = Declaration errors
authentication Logic errors

Invalid authorization
Incorrect use of

Loop control errors
Failure to validate input

cryptography Interface specification
= Failure to protect data errors
. Failu_re to partition = Configuration errors
applications « Failure to understand

simple security issues

Which of the basic security principles apply here?

© Eric A. Durant, PhD 2



CS4920-Lecture 5 3/17/2014

Is defective software unavoidable
due to its complexity?

= Numerous studies have shown that
certain development processes
drastically reduce defects.
= Researchers and practitioners concur that
this applies to security defects as well.

= Security defects have their own character:
generally not caught by use case (normal
use) or basic functional requirements

i How much does it cost?

= Very little and sometimes less

= How?

= Processes make meeting schedule more likely
= Schedule error reduced to 6%

= Less time spent on repair / early repair is cheaper
= 4% of total time

= 789% resulting increase in productivity

= Very good correlations between fewer defects and

less schedule error [Jones]

i Post-release costs also reduced

= Producers
= Creating, testing, and releasing patches
= Bad press
= Customer dissatisfaction
= Legal action
= Consumers
= Testing and deployment
= Downtime

© Eric A. Durant, PhD



CS4920-Lecture 5 3/17/2014

i Two-pronged process approach

= Defects managed throughout SDLC
= Address security throughout SDLC

10

Managing defects throughout the
SDLC

= Managing = removal and measurement

= Multiple defect removal points needed
= Less propagation of defects
Easier to trace to root cause
Early warnings of process variance
More chances to catch an early defect
Common points:
= Requirements, architectural analysis, design verification,
design review
= Code review, static code analysis
= Unit test, penetration test, system test

11

Address security throughout
SDLC

= Understand common causes of vulnerabilities
= Buffer overflows
= SQL injection
= Race conditions
= Cross-site scripting
= Unfortunate name, essentially unquoted HTML or script
= Types: local, reflected, stored
= But, is that enough?

= One company has a 700-page document
describing common causes...

12

© Eric A. Durant, PhD 4



CS4920-Lecture 5 3/17/2014

Augment understanding with best
practices

= Consider buffer overflow — what is the problem?
= Overwrite stack (common exploit)
= May happen inside library call

= General principles to avoid the problem
= Design: validate all input (use of custom types, etc.)
= Verification: State machine (UML state chart)
= Coding: checklists, static analysis (identify unsafe calls)
= Testing: Fuzz test

= Apply throughout the SDLC

= These go back to many of our earlier principles

= Risk analysis, defense in depth, application partitioning
(least common mechanism?), least privilege

13

i Scrum security challenges

= Product backlog doesn’t work well for security
because it is not generally visible and within
the client’s expertise
= Proposal: addition of “security backlog” managed
by “Security Master”: document risk, apply testing
to new/selected features
= Avoid disrupting sprint flow
= Recognize and manage risk from the beginning
= Training recognized as key by many sources

14

i Process commonalities

= Scrum/agile have commonalities with older
processes such as TSP
= Plan for security from the beginning

= The self-directed team takes responsibility and
requires decision making ability

= Multiple defect removal points minimize cost

= Training in security issues is critical

= Adapt based on what's working and what's not

15

© Eric A. Durant, PhD



CS4920-Lecture 5 3/17/2014

References

= Azham, Z., I. Ghani, and N. Ithnin. Security
Backlog in Scrum Security Practices, 5™
Malaysian Conference in Software Engineering
(MySec), IEEE, pp. 414-417, 2011.

= Schoonover, Glenn. Enhancing Customer
Security: Built-in versus Bolt-on, The DoD
Software Tech News, v8 i2, July 2005.

= Jones, Capers. Software Assessments,

Benchmarks, and Best Practices. Reading, MA:
Addison-Wesley, 2000.

16

© Eric A. Durant, PhD 6



