

Ray Tracing

- State of the art in visual realism
- Apply a detailed lighting model
 - Reflections
 - Refractions
 - Shadows
 - Non-ideal light sources
 - etc.

1

Naïve Approach

- Examine each light source
- Determine the directions it casts light
- Trace the paths of the light as it
 - Reflects
 - Refracts
- Until...
 - Most are not of interest

2

Pinhole Camera Approach

- Goal: How much light hits a pixel?
- Trace the light rays that strike a pixel
- Recall the projection model
 - All points are projected through a point

© Eric A. Durant, PhD

Basic Ray Tracing

- Determine the ray path for each pixel
 - P_{prp} Projection reference point
 - P₀ Pixel position
 - $u = P_0 P_{prp}$; Ray direction (normalized)
 - Actual Ray: $P = P_0 + su$
- Intersect the ray with all surfaces
 - Find the closest (smallest s)

4

Intersecting With a Sphere

- Sphere equation
 - $|P P_c|^2 = r^2$
- Derivation
 - $|P_0 + su P_c|^2 = r^2$
 - $s = u \cdot (P_c P_0) \pm \sqrt{(u \cdot (P_c P_0))^2 |P_c P_0|^2 + r^2}$
 - If determinant < 0, no intersection

5

Intersecting With a Polyhedron

- Discard all back faces
 - u·N > 0, pos. cosine means facing away
- Planar equation
 - $Ax + By + Cz + D = 0 = N \cdot P + D$
- Derivation
 - $\quad \bullet \quad s = -\frac{D + N \cdot P_0}{N \cdot u}$
- Complication: Did it intersect?

Reducing Intersection Costs

- Most expensive computations
- Tessellated objects may have 100s of faces
 - Do we "intersect" with each?
- Reduce the number of potential intersections
 - "Simplify" objects
 - Bound each one with a sphere
 - Intersect with the sphere first

7

Reducing Intersection Costs

- Extending the bounding sphere
 - Put groups of objects in a sphere
- Subdivide the space
 - Grid of cubes
 - Note which objects are in which cube
 - Trace the ray through a path of cubes

8

Ray Interaction With a Surface

- Now we have the closest surface
 - What next?
- Follow illumination rules

Shadow Ray (L)

- Is this point directly illuminated?
- Identify shadow rays to all light sources
- Trace them back toward the light source
- If it intersects a surface first, ignore
 - May miss some reflected illumination
- If not, apply illumination to the surface
 - Use the rules from lecture 5

10

Reflected Secondary Ray (R)

- Continue to trace the ray in reflection
- Use the specular reflection derivation
 - $\hat{\boldsymbol{R}} = (2\hat{\boldsymbol{N}} \cdot \hat{\boldsymbol{u}})\hat{\boldsymbol{N}} \hat{\boldsymbol{u}}$
- Continue to trace the reflected ray

11

Refracted Secondary Ray (T)

- Continue to trace the ray in refraction
- Apply Snell's Law
 - Consider total internal reflection

 $\sin \theta_r = \frac{\eta_i}{\eta_r} \sin \theta$

$$\vec{T} = \left(\frac{\eta_i}{\eta_r} \cos \theta_i - \cos \theta_r\right) \vec{N} - \frac{\eta_i}{\eta_r} \vec{L}$$

Ray Tracing Tree

Recursively record the rays in a tree

13

Exit Conditions and Color

- When do we stop tracing?
 - Case I: We strike a light source
 - Case II: Maximum tree depth or distance
- Processing the color
 - Start at the bottom (light or ambient surface color)
 - Recursively accumulate the colors
 - Don't forget the shadow rays (L)
 - Attenuation is common

14

Anti-Aliasing

- Supersampling
 - Use a small set of rays for each pixel
- Distributed rays
 - Pick the set with some randomness
 - This injects helpful noise
- Extended light sources
 - Result in sets of shadow rays

15

© Eric A. Durant, PhD