Animation

- According to Webster
- The state of being full of movement
- "Animated Cartoon"
- A film made from many drawings. Each drawing involves a change of position in characters or objects.
- Rapid projection makes the motion appear fluid.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Applications of Animation

- Entertainment

- Toy Story, The Last Starfighter, The Return of the King
- Simulators
- Military, Flight, Doom/Quake/Tribes 2
- Reenactments
- Insurance industry, scientific visualization (Mars Exploration Rover Mission)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Physiological Reality

- Issue 1: Human eye needs about 15+ images/second for illusion of movement
- Temporal integration model - want smooth transitions after considering HVS effects
- Issue 2: Human eye can easily detect flicker below about 50 images/second
- Suggests refresh rate for CRTs, film projectors - CRT refresh rates: $60,72,75,85,100 \mathrm{~Hz}$ common
- Theater movie film: 24 fps , frame doubling
- TV: 29.97 (" 30 ") fps, interlace by 2

The "Easy" Part

- Animation "projector"
- A system which displays a sequence of pre-prepared images
- Requirements
- Controls timing and sequencing
- Related to hardware refresh rate
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The "Hard" Part

- Drawing is not the "hard" part
- Describing all the motion is
- Example:
- Suppose a scene has 6 motion parameters
- Frame rate of 30 Hz
- Duration of 5 seconds \qquad
- \# of motion values $=6 * 30 * 5=900$
- A human has 200 motion parameters \qquad

5

Specifying Motion

- Procedural - each motion parameter is described as a function of time
- Representational
- Articulation - object hierarchy \qquad
- Deformation - soft object
- Stochastic - random variables and \qquad processes
- Behavioral - rules decide next motions \qquad

Key Framing

- Classic approach
- Story board is developed
- Key frames are identified and drawn
- In-between frames are interpolated
- Modern variant
- Morphing - transform one shape into another
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Generating In-betweens
\qquad

- Map points/vertices in one image to another
- Interpolate position in-between \qquad
- Each point follows a line or curve

Start

Interpolation Paths

- Path shape is critical to the "effect"
- Linear is most common
- Why?
- Common curves
- Circular/trigonometric
- Splines
- Motion studies - describe vertex paths
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Articulated Motion

- Common in robotics
- Objects composed of a series of rigid
\qquad links
- J oint types
- Revolute - rotate only
- Prismatic - slide only
- Degrees of Freedom (DOF)
- Number of independent position variables

\qquad
\qquad
\qquad

Computing Articulations (1)

- Kinematics - parameterized matrix transforming from joint parameters to position and orientation
- Inverse Kinematics - parameterized inverse \qquad matrix
- Jacobian - "First" derivative of kinematics \qquad
- Specify incremental "motion" effects
- I.e., given the current position, what is the local effect of each parameter on the motion? \qquad
\qquad
\qquad
\qquad
\qquad
Computing Articulations (2)
- A common notation
- Denavit-Hartenberg (DH)
- 4 DOF translation between any 2 rigid frames
- Translate, rotate, translate, rotate
$\left[\begin{array}{cccc}\cos \theta_{i} & -\sin \theta_{i} & 0 & a_{(i-1)} \\ \sin \theta_{i} \cos \alpha_{(i-1)} & \cos \theta_{i} \cos \alpha_{(i-1)} & -\sin \alpha_{(i-1)} & -\sin \alpha_{(i-1)} d_{i} \\ \sin \theta_{i} \sin \alpha_{(i-1)} & \cos \theta_{i} \sin \alpha_{(i-1)} & \cos \alpha_{(i-1)} & \cos \alpha_{(i-1)} d_{i} \\ 0 & 0 & 0 & 1\end{array}\right]$
\qquad

Soft Object Animation

- Deformations
- Object is flexible
- Model surface using a flexible tessellation
- Each movable vertex may be a DOF
- Gets into curved surfaces
- (optional) later lecture
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

