

Transformations

Based on homogeneous coordinates

Actual Point

Homogeneous Coord.

$$\vec{P} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$\vec{P}_{h} = \begin{vmatrix} x_{h} \\ y_{h} \\ z_{h} \\ h \end{vmatrix}$$

$$\mathbf{x} = \mathbf{x}_h / \mathbf{h}$$
 $\mathbf{y} = \mathbf{y}_h / \mathbf{h}$ $\mathbf{z} = \mathbf{z}_h / \mathbf{h}$

Translation

Move in x, y, and z directions

•
$$x' = x + T_x$$
, $y' = y + T_y$, $z' = z + T_z$, $h' = h$

$$\vec{T} = \begin{bmatrix} 1 & 0 & 0 & T_x \\ 0 & 1 & 0 & T_y \\ 0 & 0 & 1 & T_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \vec{P}_h' =$$

Scaling

Use translation to scale about any point

$$\begin{split} \vec{P}_{h}' &= \vec{T} \left(x_{\mathrm{f}}, y_{\mathrm{f}}, z_{\mathrm{f}} \right) \vec{S} \left(s_{\mathrm{x}}, s_{\mathrm{y}}, s_{\mathrm{z}} \right) \vec{T} \left(-x_{\mathrm{f}}, -y_{\mathrm{f}}, -z_{\mathrm{f}} \right) \vec{P}_{h} \\ & \begin{bmatrix} S_{\mathrm{x}} & 0 & 0 & 0 \\ 0 & S_{\mathrm{y}} & 0 & 0 \end{bmatrix} \end{split}$$

$$\vec{S}(S_x, S_y, S_z) = \begin{vmatrix} 0 & S_y & 0 & 0 \\ 0 & 0 & S_z & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

Shearing

Shear in x based on y coordinate

$$\vec{S}h(sh_{xy}) = \begin{bmatrix} 1 & sh_{xy} & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation (1)

- There are an infinite # of rotation axes
- Simplest cases first
 - Ex. CCW about z-axis

5

Rotation (2)

- Rotation about x-axis and y-axis
 - Do by permutation not computation ∑†α ∑†α ∑†β

Arbitrary Rotation (1)

About point and axis

$$\vec{P}_{r} = \begin{bmatrix} x_{r} \\ y_{r} \\ z_{r} \end{bmatrix}$$

$$\hat{n} = \begin{bmatrix} x_{n} \\ y_{n} \\ z_{n} \end{bmatrix}; x_{n}^{2} + y_{n}^{2} + z_{n}^{2} = 1$$

$$\vec{x}$$

Arbitrary Rotation (2)

 $\vec{R}_{\hat{n}}(\theta) = \vec{T}(\vec{P}_{r})\vec{R}_{x}(-\alpha)\vec{R}_{y}(-\beta)\vec{R}_{z}(\theta)\vec{R}_{y}(\beta)\vec{R}_{x}(\alpha)\vec{T}(-\vec{P}_{r})$

$$\cos \alpha = \frac{z_n}{\sqrt{y_n^2 + z_n^2}} \quad \cos \beta = \sqrt{y_n^2 + z_n^2}$$
$$\sin \alpha = \frac{y_n}{\sqrt{y_n^2 + z_n^2}} \quad \sin \beta = -x_n$$

8

3-D Viewing

Modeling Xform: Model → World

Draw the picture

Global 2.

Viewing Xform: World → View

Observer position

Global 3.

Clip

Remove objects which can't be seen
 Projection Xform: View → Projection

Global 4.

3D → 2D

Global

Workstation Xform: Projection → Device

Adjust size and position on screen

Viewing Coordinates (1)

- Convenient reference for viewing
- Account for observer
 - Position
 - Orientation
 - Direction of gaze
 - Which direction is "up"

10

Viewing Coordinates (2)

- 1. Define a plane whose normal vector is in the view direction: $\mathbf{z}_{\mathbf{v}} = \mathbf{N}$
 - "The film"
- 2. Determine if viewing is relative to a point
 - Should we clip behind the camera?
- Select a view-up vector ${\bf v}$ that is not parallel to ${\bf z}_{\bf v}$ that will specify ${\bf y}_{\bf v}$

11

 z_0

Transformation Process (1)

- 1. Translate the world to the view origin
 - $T(-x_0, -y_0, -z_0)$
- Rotate the world coordinate system to align with the viewing coordinate system
 - Make three rotations: R_x, R_y, R_z
 - A reflection may also be needed
 - Or make a basis transformation

12

© Eric A. Durant, PhD

Projection Transformation

- Moving 3-D viewed scene to 2-D window
- Two types
 - Parallel
 - Viewed size is not a function of distance
 - Perspective
 - Viewed size is a function of distance

Axonometric Projection (1)

- All 3 axes projected onto x-y plane
 - Parallel lines still remain parallel
 - Generalized extension to oblique
 - View "all" 3 sides at a time
- Isometric
 - All 3 units have same projected length
- Dimetric
 - Exactly 2 units have the same projected length
- Typically up (y) remains up

17

Axonometric Projection (2)

- Common Isometric Formats
 - 30° x & z 30° above horizontal
 All axes 120° apart
 - 1:2 x & z rise by 1 for run of 2
 (Bresenham?) (atan(1/2) = 26.5...°)
 - Military x & z 45° above horizontal
 - separated by 90°, so building tops (x-z plane) not skewed
- Dimetric Example (x-y vs. z)

18

© Eric A. Durant, PhD

Axonometric Projection (3)

- General, with y upward
- Isometric (all projected lengths equal)

$$\sqrt{a^2 + c^2} = d = \sqrt{b^2 + e^2}$$

- Dimetric?
- General?

 $\begin{bmatrix} \cos\theta & -\cos\theta \\ \sin\theta & 1 & \sin\theta \end{bmatrix}$

