CS421-Lecture 2 2 December 2004

i OpenGL

= Software interface to graphics hardware
= Hardware independent

= Many graphics boards provide hardware
accelerators for OpenGL

= Primitives-based

= Scenes must be built from simple shapes
= Support libraries are available
= C language-based

i OpenGL Supports...

= Wire frames and filled shapes

= depth cueing (“fog™)

= Anti-aliasing for smoother images

= lllumination, specular materials, and
texturing

= Motion blurring and depth of field
effects

i OpenGL Syntax

= Functions
= Prefixed by gl
= Each “word” starts with a capital letter
= E.g. glClearColor
= Constants
= Prefixed by GL_
= All upper case
= E.g., GL_POLYGON

© Eric A. Durant, PhD 1



CS421-Lecture 2

i OpenGL Flexibility

= Language “independent”
= Most routines support multiple variations
= Similar to C++ overloading
= Function names are suffixed with parameter type

information

= Provide “safe” type names
= Qt wrapper (QGLWidget)

= http://doc.trolltech.com/opengl.html

= Only in Qt Enterprise and Qt Free Editions

2 December 2004

i OpenGL Type Suffixes

unsigned long

Suffix|Type C Type OpenGL Type

b 8-bit integer signed char  |GLbyte

s 16-bit integer short GLshort

i 32-bit integer int or long GLint, GLsizei

f 32-bit float float GLfloat, GLclampf

d 64-bit float double GLdouble,
GLclampd

ub 8-bit unsigned int  |unsigned char |GLubyte,
GLboolean

us 16-bit unsigned int |unsigned short|GLushort

ui 32-bit unsigned int |unsigned int, |GLuint, GLenum,

GLbitfield

i OpenGL Type Suffix Examples

= Set Color to “Red” via RGB values
= glColor3ub(255,0,0); // (1<<8)-1
= glColor3us(65535,0,0); // (1<<16)-1
= gIColor3ui(4294967295,0,0);
/1 (1<<32)-1 (?)

= glColor3f(1.0f,0.0f,0.0f);
= glColor3d(1.0,0.0,0.0);

© Eric A. Durant, PhD




CS421-Lecture 2

i OpenGL is State-based

= Many attributes are state-based
= They remain in effect until changed
= Similar to having a single QPainter in Qt
= With a current QPen, QBrush, etc.
= State attributes can be queried
= glGetTYPEv(GLenum pname, GLtype* params);
= GLint currentColor[4]; // RGBA
= glGetintegerv(GL_CURRENT_COLOR, currentColor);
= State attributes can be saved for later use
= glPush...
= glPop...

2 December 2004

i OpenGL State Items

= Color = Light source
= Viewing characteristics
= Depth, etc. = Material/surface
= Transformations properties
= Model = Texturing
= Projection = Anti-aliasing
= Line patterns = Dithering
= Polygon modes = Pixel storage options

i OpenGL Primitives (1)

= GL_POINTS .
= GL_LINES v —

A

= GL_LINE_STRIP Q
V, V.

0 1

© Eric A.

Durant, PhD




CS421-Lecture 2

* OpenGL Primitives (2)

= GL_LINE_LOOP ,
A A

Vy

= GL_POLYGON V. v
Vi A
& A Vg
=GLQUADS 'VZ .
Vs
Vl VA 10

2 December 2004

i OpenGL Primitives (3)

A 0

= GL_QUAD_STRIP . v
3

Vg Vy

2

%
m GL_TRIANGLES . Vy
A Vi > v,
Vs

11

i OpenGL Primitives (4)

vV, vy

= GL_TRIANGLE_STRIP y
Vy
Vi

= GL_TRIANGLE_FAN

© Eric A.

Durant, PhD




CS421-Lecture 2 2 December 2004

i Using OpenGL Primitives

= Built-up using a “Code Block”

= Example
glBegin(GL_LINE_LOOP);
glVertex3d(5.0, -3.5, 0.0);
glVertex3d(6.9, 2.5, 9.1);
glVertex3d(-2.2, -5.1, -4.0);
glEndQ);

13

OpenGL Rendering Pipeline

Per-Vertex Operations
/ Primitive Assembly

Evaluators

; ; Per-
Display Lists Fragment
- Operations
Pixel Pixel
Data Operations
H
5 Framebuffer

14

i OpenGL Pipeline Steps

= Evaluators — Convert curve control vertices to facet
vertices

= Per-Vertex — Transform/project, clip, generate
texture coordinates, etc.

Pixel — Packing, bias/scale/map, etc.

Texture — Adding texture to surfaces

Fragments — Potentially drawn pixels (color & depth)
Rasterization — Determining fragment info

Per-Fragment — texture, tests to discard, blending,
logical operations

15

© Eric A. Durant, PhD 5



CS421-Lecture 2 2 December 2004

i OpenGL Utility Library (GLU)

= Utility routines for complex shapes

= Tessellation (division into convex polygons),
Curves, etc.

= Include files
= #include <GL/gl.h>
= #include <GL/glu.h>
= Link Libraries
= opengl32.{lib,dIl} libGL.{a,so}
= glu3d2.{lib,dIl} libGLU.{a,so}

16

i OpenGL Utility Toolkit (GLUT)

= Complex 3D primitives

= Sphere, icosahedron, torus, teapot
= Windowing functions

= Size, position, exposure control, etc.
= Include files

= #include <GL/glut._h>

17

i Qt OpenGL Widget (QGLWidget)

= OpenGL rendering within a Qt application

= Lets Qt handle Ul and OpenGL handle 3-D
rendering

= Modeled after GLUT

= Callbacks replaced with overridable, virtual
functions: {initialize,resize,paint}GL

= Include file
= #include <qgl.h>

18

© Eric A. Durant, PhD 6



