
CS321-Lecture 21 11/15/2004

© Eric A. Durant, PhD 1

1

View Volumes and Clipping
Not display entire scene?

Objects behind observer
Objects too close to recognize
Objects too far to be worth viewing

Must clip in 3-D
Against polyhedron faces?
May be done in hardware

2

Visible Surface Detection
Can’t see all sides of objects

Only want to draw the visible ones

Object-space methods
Comparisons in scene coordinates

Image-space methods
Comparisons at projection plane

3

Back Faces

These object
faces (polygons)

are visible.

These object
faces are not

visible.

CS321-Lecture 21 11/15/2004

© Eric A. Durant, PhD 2

4

Back Face Detection (1)
Plane equations:

Ax+By+Cz + D < 0
if “inside” surface

If the observer’s point is
“inside”, then the “outside”
must be on the opposite

side, so this is a back face
and is not visible.

5

Back Face Detection (2)

Surface normal
vectors

View direction
vector

N2=(A2,B2,C2)

V zV C=V Ni

Let Vz = -1. If C > 0,
vectors are in opposite

directions, so face is visible.
Otherwise, it is a back face

or “edge on”.
N1=(A1,B1,C1)

0<V NiGeneral rule: visible if

6

Is Back Face Detection
Enough?

One object may obscure
front faces of another

Back face detection is a quick
way to eliminate some polygons

from further processing

Other parts of complex
objects may hide some front

faces (fully or partially)

CS321-Lecture 21 11/15/2004

© Eric A. Durant, PhD 3

7

Depth-Buffer Method

Set all depth-buffer values to maximum depth.

Screen buffer: one color
value per pixel

Depth buffer: one z-
coordinate value per pixel

Set all screen-buffer values to background color.
Process each polygon pixel by pixel; if closer than
current depth, update depth and store color.

Also known as “z-buffer”.

8

A-Buffer Method
Similar to depth buffer
Multiple polygons at a pixel?

Depth buffer stores only “closest”
Consider effect of transparent overlapping
polygons?

Maintain list of components at each
pixel & combine

9

Scan-Line Method

Similar to polygon filling; use
data from polygon edge table.

Store color of “closest” polygon
at each point in scan line.

Keep track of all polygons
the scan point is inside of.

CS321-Lecture 21 11/15/2004

© Eric A. Durant, PhD 4

10

Scan-Line Method Problem

Assumes polygons are ordered in depth; poly1 is
either in front of or behind poly2.

Solution: break polygons
into parts at point where

depths “cross”.

What about exceptions?

11

Depth-Sorting Method
So far, one pass through screen buffer
What if more than one?

Draw all polygons fully, farthest first
Closer objects “draw over” others

Polygons sorted by depth

12

Depth-Sort Rules
Order S’s by greatest depth
If no depth overlap, OK
If no x-y bound overlap, OK
If S completely behind, OK
If S' completely in front, OK
If no x-y edge overlap, OK

CS321-Lecture 21 11/15/2004

© Eric A. Durant, PhD 5

13

Bounding-Box Overlap

If no x-y bound
overlap, no need to
reorder polygons.

Later, check polygon edge
intersections for more

precise answer.

14

Depth Comparison

Test “inside/outside” using plane equation
and all vertices of other polygon.

xz

S

S'

xz

S

S'

15

Depth-Sort Algorithm
Process S’s by depth
If a test succeeds, S order OK

Draw polygon and proceed

If no success, swap S & S'
Repeat testing

Watch out for loop
May need to split polygon into parts

