CS321-Lecture 8

i Vertex Complications

Q 1 intersection

O 2 intersections
What is the difference between these cases?

9/29/2004

i Vertex Intersection Types

Inside/outside No change
change

i Vertex Workaround

/

If monotonic, shorten If not monotonic,

one edge by one scan leave edges alone
3

© Eric A.

Durant, PhD




CS321-Lecture 8

i Horizontal Edges

Ignore horizontal segments (but
don't fill over them?)

Check monotonicity of adjacent edges

9/29/2004

i Calculating Intersections

= Edge line equations?
= Expensive
» Function evaluated every scan line
= Coherence
= Each scan line similar to previous
= Intersections calculated incrementally

Incremental Calculation
m:yk+l_yk yk+1_yk:1
1

Xsr — Xk
Xer = Xk m
X =X, + !
k+1 k m
Similar to DDA algorithm?
Floating point calculation? 6

© Eric A.

Durant, PhD




CS321-Lecture 8

_ Ay

m =
AX

i Integer Calculation

Accumulate Ax at each step
If sum > Ay, reduce modulo Ay
and update x

X, AY = X Ay + AX

9/29/2004

= ﬂ = _2 Y X sum Xice1
AX 9
o 3 9 9 3
1 3 -18 -6 2
2 2 -15 -3 1
31 -12 0 0
4 0

i Integer Calculation Example

To round instead of truncate,
compare sum with Ay/2 or
compare sum of 2Ax with Ayg

See text, page 200

* Intersection Data Structure
A
B

BI
C v
Cl
Yo
1
0 9

© Eric A. Durant, PhD




CS321-Lecture 8 9/29/2004

i Using Intersection Data Structure

= Odd/even: sort by x and toggle

= Non-zero winding

= Add an up/down (CCW/CW) data member to the
edge data structure
= Proceed as before
= Including shortening and horizontals
= But instead of toggling in/out
Start with winding number = 0 and add...
—1 for edge crossing upward
+1 for edge crossing downward

i Boundary Fill

= Start at interior point
= Paint interior outward toward boundary

= Stop on boundary encounter
= Determined by pixel color
= Also stop recursion on “fill” color
= Can change fill pattern (with proper
choice of colors)

i Boundary Fill Patterns

00000 00000
00000 @0000
00000 00000
00000 Q0000
00000 00000
4-connected 8-connected

~

© Eric A. Durant, PhD 4



CS321-Lecture 8 9/29/2004

* Boundary Fill Algorithm

= Stop if current position is:
= Boundary color
= Fill color

= Otherwise
= Set fill color

= Recursively try neighbors
= North, East, South, West (arbitrary)

» Each neighbor recursively performs algorithm
until “stop”

* Boundary Fill Example
000000000000
0000000

o = N WDHh T OO N

c-000 00000

@00
o X
000
000
000
o) 19
@00
@00
2 3 4

~@@0 00000
@00 0000
*c@00 0000
~0000000
~ Q000000
c@@O0 0000
0000000
000000

—
[

i Boundary Fill Problems

= Recursive algorithm
= Stack space?
= Terminates on
= Boundary color (good)
= Fill color (may be a problem)
= What if some fill color present?
= Pixels in area to be filled

© Eric A. Durant, PhD 5



CS321-Lecture 8 9/29/2004

i Flood Fill

= Similar to boundary fill
= But replaces “interior” color
= Floods through an area
= Area initially consistent color
= Only one significant color
= Paint bucket tool
= In common drawing programs

i Fill Algorithm Summary

= Based on vector edge model
= Scan line fill
= Add integer coherence
= Even-odd or winding
= Based on pixel model
= 4- or 8- connected
= Recurses over

« Boundary fill: is not a (boundary or new internal) color
= Flood fill: is an old internal color

© Eric A. Durant, PhD 6



