CS321-Lecture 7 9/29/2004

* Filling Graphical Shapes

= Know how to draw outlines
= Polygons, circles, ellipses, etc.
= What if we want to fill them?

-
—2U)

i Calculating Fill Areas

= Fill one scan line at a time
= Odd/even rule
= Need intersection points
= Use pixels directly?
» In a buffer? On screen (GetPixel)?

= Calculate intersections from polygon edge
equations?

* Scan-Line Polygon Fill
000000000000
T@00000000000e
000000000000

;000000000000
1000000000000
—3—.6“0—6—&6-.‘@0—
2000000000000
1000000000000
0000000000000
0O 1 2 3 4 5 6 7 8 9 1011 3

© Eric A. Durant, PhD 1



CS321-Lecture 7 9/29/2004

i A Filling Anomaly?

i Inside-Outside Tests

= Odd-even rule
= Generalized from scan-line fill

= May produce unusual results if edges
intersect

= Nonzero winding number rule
= Alternate way of determining interior

i Odd-Even Rule

= Choose a point
= Draw ray to a distant point
= Don't intersect any vertices
= Count edges crossed
= Odd count means interior
= Even count means exterior
= Same idea as scan-line even/odd

© Eric A. Durant, PhD 2



CS321-Lecture 7 9/29/2004

i Odd-Even Example

1

Nonzero Winding Rule

= Choose a point
= Draw ray to a distant point
= Don't intersect any vertices

= (or shorten an edge when the edges lie on
opposite sides of the ray)

= Consider edges crossed (right hand rule)

= Subtract 1 when ray to edge is clockwise
» “Left-to-right” as seen along ray

= Add 1 when ray to edge is counter-clockwise
= Nonzero count means interior

i Nonzero Winding Example

© Eric A. Durant, PhD 3



CS321-Lecture 7 9/29/2004

i Computing Winding Number

= Edge crossing direction
= Compute cross product SaeSet?;tf
= Between ray and edge
= Sign of z value determines direction
= Compute dot product
= Use perpendicular to ray vs. edge
= Sign of product determines direction

i Cross Product Example

ux E = (uFE.-u.E,u.E, —u,F. u,E, —u,E,)
= (1-0-0-0,0-1—=1-0,1-0—=1-1)
(0,0i=1)}
E = V-V, —1" means E crosses P

from left to right

:U‘y'la

u=(1,1,0)

i Cross Product Simplification

uxE = (u,E.—uw.FEju.F, —uFE. u.FE,—u,kFE,)
(y -0—-0-FE,.0-E, —u, - 0,u.Ey —u,E,)

negative means E crosses P from left to right

© Eric A. Durant, PhD



CS321-Lecture 7 9/29/2004

Dot Product Example

w-E = wE, +w,E,+w.E.
= —1 1+1-04+0-0

e

u=(1,1,0), w = (-1,1,0) [“right-to-left” perpendicular to u]
13

™.
Again, “—1" means E crosses P
from left to right

Dot Product Simplification

w=1uy
— _ Ar
m, = Ay

w-FE uy - E

(—uy, ug,

0): (B, E,, E.)

Same result as from cross product!

i What Does Fill Mode Mean?

= Mathematical definition

= Ray / edge crossings
= Odd/even (alternating)

= Overlapping parts not filled
= Nonzero winding

= Overlapping parts are filled

© Eric A. Durant, PhD 5



CS321-Lecture 7

Filling a Polygon (Qt) (1)

QCanvasPolygon
inherits QCanvasPolygonal I'tem
inherits QCanvasltem
inherits Qt (namespace for enums)

QCanvasPolygon: :setPoints(
QPointArray pa)

QCanvasPolygonal I'tem: :setBrush(
Qbrush b)

QCanvasPolygonal I'tem: :setWinding(
bool enable) // protected

9/29/2004

Filling a Polygon (Qt) (2)
class myPolygon : public QCanvasPolygon
myPolygon(Q);
k-"
myPolygon: :myPolygon()
¢ setBrush(QBrush(green,

DiagCrossPattern));
setWinding(true);

Filling a Polygon (MS

i Windows)

BOOL CDC::Polygon
(LPPOINT points,
int count);

int CDC::SetPolyFillMode

(int mode);
T [ALTERNATE

WINDING

© Eric A.

Durant, PhD




