CS321-Lecture 6 9/19/2004

i Coordinate Systems

= Modeling/local coordinates

= World coordinates

= Normalized device coordinates
= Device coordinates

i Modeling/Local Coordinates

= Convenient for object to be drawn
= Typical units: meters, feet, etc.

= Might not be Cartesian

= floats and doubles are common

i World Coordinates

= Groups of objects are combined
= Form a complete image
= Allows prototype objects

= Drawn in local coordinates

= Copied, resized and moved into world
coordinates

= Units still feet, meters, etc.

© Eric A. Durant, PhD 1



CS321-Lecture 6

Normalized Device
Coordinates

= Device-independent
= Horizontal and vertical ranges of 0 to 1
= “Independence” layer between world
and various devices
= Screen (windows of various sizes)
= Printer

9/19/2004

* Device Coordinates

= Actual pixels to draw
= Allows for movable drawing windows
= Usually handled by the O/S
= Pixel size (pixels/inch) is relevant
= Typical processing
= (XimerYme) 2 KwerYawe) 2 KnderYnae) 2 Xaeryac)

Coordinate System Example

Local

© Eric A.

/ I\‘l/ormalized
@. = - » a 66
L $
World
L @@
Device
Durant, PhD



CS321-Lecture 6

i Drawing with Pixels

= Drawing algorithms

= Point, line, circle, etc.

= Assume pixels centers as reference
= Real pixels have finite size

= Affects graphic primitive rendering
= Inter-pixel distances are fixed

= Limited precision

9/19/2004

i Pixel Addressing

problems

= A pixel occupies a finite space
= Itis not a true “point”

= Actual length = 3 0

= Addressing a pixel by its center leads to

= Consider a line from (2,1) to (5,1)

ooodo
«Drawnlength=4 /B ENE[]
OoodOn

i Boundary Addressing (1)

= Address pixels by their “boundaries”

= This “removes” the last pixel
= Still not ideal

© Eric A. Durant, PhD




CS321-Lecture 6

i Compensating for Pixel Size

= Ignore the problem?

= May make little difference

= Lines may be connected anyway
= Shrink object by one pixel?

= Sometimes done when filling
= E.g., filling rectangle drops a pixel row, column

10

9/19/2004

i Boundary Addressing (2)

= We attempt to plot the interior of objects
= Usually plot point if center is inside boundary
= Compare with midpoint circle
= Works better for squares etc.
= Circles (text, p. 122)
= Still not ideal
= Point are not infinitesimally small
= Lines have finite width
= Inside / outside / somewhere between?

11

i Filling

= We can draw outlines
= Polygons
= Circles and other conics
= How do we make them solid?

= Scan lines

= A carefully drawn outline has pixels on each
scan line

12

© Eric A.

Durant, PhD




CS321-Lecture 6 9/19/2004

i Basic Approach

= For each scan line
1. Determine the intersection with all
boundaries
= Look for active outline pixels —or—
= Find them mathematically
Sort the intersection points
Scan line from left to right
Start outside

At each intersection, toggle in/outness

o s @

13

i Example 1
ouT m our

14

i Example 2

15

© Eric A. Durant, PhD



