
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Modeling/Local Coordinates

- Convenient for object to be drawn
- Typical units: meters, feet, etc.
- Might not be Cartesian
- floats and doubles are common
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

World Coordinates

- Groups of objects are combined
- Form a complete image
- Allows prototype objects
- Drawn in local coordinates
- Copied, resized and moved into world coordinates
- Units still feet, meters, etc.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Pixel Addressing

- Addressing a pixel by its center leads to problems
- A pixel occupies a finite space
- It is not a true "point"
- Consider a line from $(2,1)$ to $(5,1)$
- Actual length = 3
- Drawn length $=4$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Compensating for Pixel Size

- Ignore the problem?
- May make little difference
- Lines may be connected anyway
- Shrink object by one pixel?
- Sometimes done when filling
- E.g., filling rectangle drops a pixel row, column
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Boundary Addressing (2)

- We attempt to plot the interior of objects
- Usually plot point if center is inside boundary \qquad - Compare with midpoint circle
- Works better for squares etc.
- Circles (text, p. 122)
- Still not ideal
- Point are not infinitesimally small
- Lines have finite width
- Inside / outside / somewhere between?
\qquad
\qquad
\qquad
\qquad

Filling

- We can draw outlines
- Polygons \qquad
- Circles and other conics
- How do we make them solid? \qquad
- Scan lines
- A carefully drawn outline has pixels on each \qquad scan line
\qquad

