CS-280 Quiz 3 Solution

Taken Friday 28 March 2002; Returned Monday 31 March 2003
Show the contents of the A, B, and IX registers and the C (carry) bit of the CCR after each of the instructions at the bottom of the page. The following 4 instructions have been used to initialize these registers and the C bit...
ldaa $\# 0 x 2 \mathrm{C}$; put the value $0 \times 2 \mathrm{C}$ into accumulator A
ldab \#0x12 ; put the value 0×12 into accumulator B
ldx \#0x0102 ; put the value 0x0102 into index register X
sec ; set the carry bit
You may use the reference guide. You may use any base that is convenient.
You may indicate an unchanged register with a ditto mark (") or just copy its contents onto the next line.

You will not be penalized for propagated errors. (For example, if you make a mistake on the first line, you can still get full credit for the other lines, as long as you correctly move forward from your line 1 results.

	D		IX	C bit
	A	B		
	0x2C = 0b00101100	0x12 = 0b00010010	0x0102	1
sbca 1,x	0x19	"	"	0
tab	"	0x19	"	"
ldaa 0,x	0x6C	"	"	"
xgdx	0x01	0x02	0x6C19	"
aba	0x03	"	"	0

Memory	
Address	Content
0x0100	0x51
0x0101	0x10
0x0102	0x6C
0x0103	0x12
0x0104	0x33
0x0105	0x00

sbca $1, \mathrm{x} ; \mathrm{IX}=0 \mathrm{x} 0102$. So $1, \mathrm{x}$ refers to 0 x 0103 in memory, which contains 0 x 12 .
Subtract with carry from $\mathrm{a} . . \mathrm{a}=\mathrm{a}-$ memory - carry $=0 \times 2 \mathrm{C}-0 \times 12-1=0 \times 1 \mathrm{~A}-1=0 \times 19$.
The subtraction did not result in a borrow, so the C bit becomes 0 .
tab ; Transfer a to b.
ldaa $0, \mathrm{x} ; \mathrm{IX}=0 \mathrm{x} 0102$. So $0, \mathrm{x}$ refers to 0 x 0102 in memory, which contains $0 \times 6 \mathrm{C}$.
xgdx ; Exchange $D(A: B)$ with IX. $D=A: B=0 x 6 C 19$. Old IX value of $0 x 0102$ is split into two bytes.
The most significant byte goes to A ; the least significant goes to B .
aba ; Add b to $\mathrm{a} ; \mathrm{a}+=\mathrm{b}$; There is no carry out, so the C bit goes to 0 (but it was already 0).

