
CS280-Lecture 18 5/5/2005

© Eric A. Durant, PhD 1

1

I/O systems
Polling / Handshaking

Check status bit
If ready to get or send data
Have to check periodically

What about polling devices with vastly different
speeds (typing, remote control, Ethernet interface)?
Interrupts

Device issues an interrupt
Code execution vectored to interrupt service routine (ISR)
automatically
No periodic checking needed – efficiency!

2

An analogy
Reading a book Main program running
Phone rings Interrupt occurs
Finish sentence Finish instruction
Bookmark Push registers
Answer phone Disable other interrupts
Identify caller Determine source / vector
Respond accordingly PC = vector value
Hang up phone RTI (pulls registers)
Resume reading Main program continues

Analogy by Dr. Welch

3

Interrupts on the 68hc11
Interrupts can occur after any
instruction

Latency – longest instruction (IDIV/FDIV
takes 41 cycles)

All registers are stacked automatically
rti (return from interrupt) unstacks the
registers
Must end the ISR with an rti

CS280-Lecture 18 5/5/2005

© Eric A. Durant, PhD 2

4

Stack on interrupt

5

Vector locations
FFC0-FFD5 reserved
FFD6 SCI serial system
FFD8 SPI serial xfer complete
FFDA Pulse acc. input edge
FFDC Pulse acc. overflow
FFDE Timer overflow
FFE0 Timer output compare 5
FFE2 Timer output compare 4
FFE4 Timer output compare 3
FFE6 Timer output compare 2
FFE8 Timer output compare 1

FFEA Timer input capture 3
FFEC Timer input capture 2
FFEE Timer input capture 1
FFF0 Real time interrupt
FFF2 IRQ
FFF4 XIRQ
FFF6 SWI
FFF8 Illegal opcode trap
FFFA COP timeout
FFFC COP clock monitor timeout
FFFE Reset

Note: For special test/bootstrap mode, change the first nibble from F to B.

6

Vector example (if in RAM)
Vectors from

0xFFC0-0xFFFF in normal
mode
0xBFC0-0xBFFF in special
test or bootstrap mode

If system has RAM in the
real vector location, we can
write to it.
Standard boot ROM has
vectors from BFC0-BFFF, so
this will have no effect. ROM
vector always goes the page
0 jump vectors (next slide).

vec_base = 0xBFC0

irq_vec = vec_base + 0x32

ldd #irq_isr
std irq_vec

CS280-Lecture 18 5/5/2005

© Eric A. Durant, PhD 3

7

Jump vectors, standard ROMs
(1/2)

8

Jump vectors, standard ROMs
(2/2)

9

Jump vector example
op_jmp_ext = 0x7E ; opcode of the JMP

; (extended mode) instruction
jvec_irq = 0xEE ; location of RAM jump vector

; (external interrupt request)

; set up JMP vector
ldaa #op_jmp_ext
staa *jvec_irq
ldd #irq_isr ; address of the ISR to

; follow the JMP opcode
std *jvec_irq+1

CS280-Lecture 18 5/5/2005

© Eric A. Durant, PhD 4

10

How do you turn on interrupts?

Interrupts above IRQ in the previous
tables are turned on/off by I bit in CCR
CLI allows interrupts to occur
SEI turns off interrupts
I bit set during an interrupt so the
interrupt does not interrupt itself

11

Interrupts – subsystem-
specific steps

Most HC11 subsystems (e.g., timers)
require additional handling

Initialization: set interrupt enable bit
Processing complete flag (tell subsystem to
go on to next sample, etc.)

12

SWI – software interrupt
Instruction that triggers an interrupt
Uses…

Test portions of an ISR for hardware that isn’t
ready yet install its vector in the SWI vector
and write a test program
Convenience – like a subroutine that automatically
preserves caller’s registers (takes time, but not
extra code)…

Note: often used by debuggers and talkers

CS280-Lecture 18 5/5/2005

© Eric A. Durant, PhD 5

13

SWI example

vec_swi = 0xFFF6
.section .text
.global _start

_start: lds #_stack

ldd #swi_isr
std vec_swi

cli

again: swi
bra again

swi_isr:
; no push/pull
; do subroutine stuff

rti ; (not rts)

14

~IRQ / ~XIRQ
Pins on the HC11
~IRQ: Recognized if CCR.I is cleared
~XIRQ: Recognized if CCR.X is cleared

CCR.X, once cleared, can only be set when
chip is reset
Once X cleared by software, XIRQ behaves
as a non-maskable interrupt

15

IRQ button hardware

CS280-Lecture 18 5/5/2005

© Eric A. Durant, PhD 6

16

IRQ button code
fox11_portb = 0x1404
jvec_irq = 0xFFF2

.section .text

.global _start
_start: lds #_stack

ldd #irq_isr
std vec_irq
cli
bra .

irq_isr:
ldaa fox11_portb
eora #0b00000001
staa fox11_portb
; cli if reentrant
; do other irq stuff
rti

You know an interrupt
occurred, so there is nothing
to test (unless more than
one device can generate the
same interrupt)
Reset must have been pulled
high in initialization

17

Interrupts with GCC 3
compiler – IRQ example

Declare function with no inputs or outputs
void irq_isr() __attribute__((interrupt));

Install handler from main()
#include <msoe/os.h>
…
os_set_irq(OS_IRQ_IRQ, irq_isr);

Enabling/disabling interrupts
os_disable();
os_enable();

