CS280-Lecture 13 4/17/2005

i Making Connections...

= Functions
= Do they “own” all the CPU's registers?
= Argument passing
= How? (Value/Reference)
= Where? (Global/Register/Stack)

= Mixing C++/ASM
= How?

i Assembly language style

= Similar to C++ = Code is longer than
= Program structure C++
= Effectively use functions = Easy to get lost
= Code reuse = Harder to follow
=« Documentation = Break down into smaller
Desi functions
= Design .
= Function arguments and " COd".]g .)
return values = It is sometimes easier to
= Preconditions / code in C++, then

convert
= Or use a C++ compiler

postconditions

2

i Functions and arguments

= We have seen the wait function, which
saves all registers.

= Is there another way to do this?

© Eric A. Durant, PhD 1

CS280-Lecture 13 4/17/2005

i Register saving (1/2)

= Function saves registers used

= Function knows the registers used
(sometimes said to be “destroyed”)

= Function does not know the registers the
caller is using, so must save all destroyed

= Caller saves registers
= Caller knows registers in use

= Caller does not know registers destroyed
by function, so must save all in use

i Register saving (2/2)

= What does gcc 3.3.5 for the HC11 do?

= Assumes that D, X, Y, and CCR are
clobbered.

Argument passing

= “Pass” in global
= Usually values
= Pass in registers
= Values
= References
= Pass on stack
= Values
= References

© Eric A. Durant, PhD 2

CS280-Lecture 13

“Pass” in global variable

Idaa #1 ; load
staa 2,x ;save
Jsr calc

point: .space 3 calc: pshx ; save regs.
sum: .space 1 psha
ldx #point ; glbl
_start: Idaa 0,x
Idaa #3_) adda 1,x
Idx #point;point to adda 2,x
data R staa sum
staa 0,x ;save it ~
ldaa #2 -load 2 pula ;rest. regs.
staa 1,x ;save it pulx
1 rts
i

t

4/17/2005

Pass and return value in

register
Idaa num ; get number
Jsr mul5 ; multiply by 5

staa output ; save it

mul5: ; multiply by 5

pshb ; preserve registers used: B
tab ; copy argument to B

aslb ; B<<lorB*=2

aslb ; -.-again

aba ; now *5 finished

pulb ; restore preserved registers
rts

Pass by reference in register

ldx #str bhi L2
Jsr toupper adda #°A-"a ; make upper
staa 0,Xx

; Convert C string to L2:inx ; get next char
; uppercase bra L1 ; check next
; arg: pointer to string L3:pulx ; restore regs.
; returns: nothing rts
‘toupper:

pshx ; preserve IX
Ll:ldaa 0,x ; get char

beq L3 ; if null stop

cmpa #"a ; lowercase?

blo L2

cmpa #%z

© Eric A. Durant, PhD

CS280-Lecture 13 4/17/2005

i What do compilers do?

= Stack and/or registers?
= Combination?
= Order of arguments?

= What does our GCC 3.3.5 compiler do,
in particular?

10

Using C++ for
i Embedded Systems

= Entire program in C++...

= ...or mix C++ with assembly. Assembly
used for...
= Critical code (size and efficiency?)
= Accessing certain hardware

= Existing, proven code (e.g., reusing your
matrix keypad code)

1

i Mixing C++ & ASM

= Concept: Soft registers
= Simulate additional registers by using RAM

= Used by compiler when chip doesn’'t have enough “real”
hardware registers

= On page 0 — allows direct mode.
= Method: C++ functions in ASM

= Prologs/epilogs — function saves and restores registers, if
necessary, for caller

= Accessing parameters from stack...
= Method: Inline assembly...
= Method: extern variables...

12

© Eric A. Durant, PhD 4

CS280-Lecture 13

C++ Functions in ASM —
Accessing Parameters

= General procedure

= Load an index register with the correct
stack frame

= Used indexed mode loads and stores to
read/write
= Details:
http://people.msoe.edu/~durant/
courses/cs280/passing.shtml

13

4/17/2005

C++ Functions in ASM —
Parameters Example

; byte mean(byte x1, byte x2);

.section .text
.global mean

mean: tsx ; prolog
; SP+1->1X (last used stack location)
; [0:1],1X (return PC)
; [2+]1,1X -> parameters after first
; the 1st 8-bit parameter is in B
addb 3,x ; add the 2nd 8-bit parameter
Isrb ; unsigned division by 2 (truncate)
; 8-bit return value is in B
rts ; epilog

14

i Inline Assembly

= Useful when writing mostly in C++ but

a few ASM instructions are needed for...

= Calling ASM subroutines

= Accessing ASM global variables
= (Not covered in detail)

= Maximum efficiency for a small but often
used piece of code

15

© Eric A.

Durant, PhD

CS280-Lecture 13

i Inline ASM — calling function

void main()

{
__asm('jsr setUpHardware');
// Call routine without
// a C++ interface

}

16

4/17/2005

extern variables

= extern — The definition and label for
something...
= are external (present in another module)
= Will be resolved by the linker

= extern modifies a declaration

= Examples

= Variables — stored in another module
= Functions — implemented in another module

17

Access ASM Variable from C++

= Assembly
.section .data
-global counter
counter: .word 0x1234
s C++
int mainQ)
{
extern volatile word counter;
myLCDDipslay.outputNumber(counter, 5);

18

© Eric A.

Durant, PhD

