\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

How to do it?

- DAA - decimal adjust accumulator
- Only works on A
- normal sequence is:
- ADDA \#0x03 \qquad
- DAA
- If you want to increment (or \qquad decrement) use ADDA or SUBA not INCA or DECA. \qquad
\qquad
\qquad

Misc. algorithm

- An accumulator holds a number from 0 to 9 . This is to be displayed (in ASCII)
\qquad
- Notice, the numbers are in order in the ASCII table \qquad
- Just add \#0x30 (or \#'0) to the accumulator
\qquad
\qquad
\qquad
\qquad
\qquad

Misc. algorithm - 2

- An accumulator holds a number from 0×0 to $0 x F$. This is to be displayed (in ASCII)
- Notice, the numbers and letters are in \qquad order in the ASCII table
- If number < 0xA, add \#0x30 (or \#'0) \qquad
- If number >= 0xA, add 0x37 (or \#'A-0xA)
\qquad
\qquad
\qquad
\qquad
\qquad

Misc. algorithm - 3

- An accumulator holds a BCD number from 0×00 to 0×99. This is to be \qquad displayed (in ASCII)
- Save number, mask off upper nibble \qquad (ANDA \#0b00001111)
- Add \#'0 \qquad
- Restore number, LSRA four times
- Add \#'0 \qquad
\qquad

```
Foxl1 Expanded Mode -
I/O Ports
- Standard HC11 ports
- PORTA - 0x1000-30,3I, 2 I/0
- PORTB - 0x1004 - reserved 0 (high address)
- PORTC - 0x1003 - reserved I/O (data / low addr.)
- PORTD - 0x1008-4 I/O (+2 for COM)
- PORTE - 0x100A-8I
- Special Fox11 ports
- PORTB - 0x1404 - output to LEDs
- PORTC - 0x1403 - input from DIPs
- PORTF - 0x1401 - output for LCD
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Scanning sequence - Fox11}
- Set ddrd to 0xXX111110 (final 10 is for COM)
- Set portd[2:5] to one
- Set portd[2] to zero
- Check porte[0:3], if any zeroes, found the row/column
- If no zeros, set portd[3] to zero and portc[2] back to one
- Check porte[0:3], if any zeroes, found row/column
- Repeat until checked all 4 rows
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
```

