\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Course Prerequisites

- Synchronous logic (EE-290)
- Binary arithmetic
- Good program design techniques
- C++ programming fundamentals including functions with arguments (CS-1030)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Applications of Embedded Systems

- Appliances: microwaves, VCRs, ...
- Medical devices: hearing aids, pacemakers, ...
- Car systems: antilock brakes, engine timing and monitoring, ...
- Space vehicles: satellites, Mars rover, ...
- Many more...
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Course Objectives

- Understand the role of assembly language programming
- Understand the instruction set of a typical embedded processor (Motorola 68HC11)
- Be able to employ a modular approach to assembly language programming with code reuse
- Be able to use embedded systems development tools
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Course Objectives

- Understand memory addressing and use various addressing modes \qquad
- Understand hardware interrupts and be able to use them \qquad
- Be able to integrate assembly language subroutines into a high-level language program
\qquad
\qquad
\qquad

"Why am I taking this course?"

- Because you have to?

\qquad
\qquad
- Understand software at the most basic level, where it meets hardware
- Understand capabilities and constraints of basic computing hardware
- Insight into why certain high-level language (e.g., Java, $\mathrm{C}++$) operations are expensive or cheap
\qquad
\qquad
\qquad
\qquad

Lab Assignments

- Create a .zip file containing
- Report: Microsoft Word or PDF
- Assembly code (.s), executable (.s19), and listing (.rst) \qquad
- Email to durant@msoe.edu

The tools

- Free tools!
- WBUG11 2003 (comes with Fox11,
\qquad program downloader)
- Wookie 1.71 (simulator)
- GNU Development Chain for 68HC11
- GNU C++ compiler 3.3.5
- GNU Binutils 2.15 (assembler, linker, and more)
- You will install and use these in lab 1.

Types of Processors

- Microcomputer
- General purpose \qquad
- Mainly a CPU
- Microcontroller
- Special purpose?
- "1-chip" solution
- Additional components (M68HC11 may have all)
- Memory: RAM, EEPROM/EPROM/PROM/ROM \qquad - Peripherals (serial/parallel I/O, A/D, timers, ...)
\qquad

The M68HC11

- 68 HCl 1 is an 8 -bit microcontroller
- 8-bit data bus
- 16-bit address bus
- Up to 64 kB memory \qquad
- I/O ports A-E \qquad
\qquad
\qquad

Number Systems Terminology

- Bit (Binary diglT)
- 8 bits $=1$ byte $=2$ nibbles
- 16 bits $=2$ bytes $=1$ word (16-bit processors)
- Bits are binary (0 or 1), and represent powers of two
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Binary/Decimal/Hexadecimal

```
- 0000 = 0 = 0x0
    - 1011 = 11 = 0xB
- 0001 = 1 = 0x1
    - 1100 = 12 = 0xC
- 0010 = 2 = 0x2 - 1101 = 13 = 0xD
- 0011 = 3 = 0x3 - 1110 = 14 = 0xE
- ... - 1111 = 15 = 0xF
- 1000 = 8 = 0x8
- 1001 = 9 = 0x9
- 1010 = 10 = 0xA
```

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Two's Complement

- Two's complement is both an:
- Operation
- Numbering system
- Can have a two's complement number
- Can take the two's complement of a number

Properties of Two's
 Complement number systems

- Asymmetric: 1 more - than +
- A positive number added to its two's complement is equal to 0
- Shifted range: (about) half + and half - \qquad
- Zero is always all zeroes
- -1 is always all ones
- number a - number $b=$ number $a+$ complement number b
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Two's complement operation \qquad

- ...or finding the negative of a two's complement number
- Step 1
- Flip all bits (1s to 0s and 0s to 1s) \qquad
- Step 2
- Add one (1) \qquad
- Step 3
- Ignore any carry outs \qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

