
VHDL Summary - CE1901/1911/1921 - Dr. Durant – revised 12 October 2015

Tools | Netlist Viewers | RTL Viewer

Types
 bit

 std_logic (IEEE 9-level equivalent): ‘0’, ‘1’, ‘Z’, ‘x’ (invalid), ‘u’ (unknown), …

library ieee;
use ieee.std_logic_1164.all;

 type NAME is (ITEM1, ITEM2, …);

 Besides these “enumeration” types, VHDL has the integer types integer, natural, and positive.

 Everything above is a VHDL “discrete” type.

 VHDL also has “array” types including bit_vector and std_logic_vector

o downto

 VHDL has many other types that we don’t need in CE1910/1911/1921.

Values
 Single bit: ‘1’ or ‘0’

 String of bits for vectors: B”11010”, X”7E”, O”46”, 8b”10” (leading 0s)

 Bitfield syntax

o D <= (position => ‘1’, position => ‘1’, OTHERS => ‘0’); -- position can be to/downto

o Y <= (x(3 downto 1), q(4 to 6), 6b”110”); -- 12-bit value

Entity declarations
entity ENAME is

generic (GNAME: type := value); -- separate multiple with ;
port (PNAME : in/out type; …);

end entity ENAME; -- or just end;

Architecture, before begin
signal NAME [, NAME2…] : type;

Attributes (work in Quartus 15, not 100% portable)
 attribute keep: boolean; -- allow showing internal node in simulation, Node Finder with “Post-synthesis” filter

o attribute keep of keep_wire: signal is true;

 attribute chip_pin : string; -- alternative to graphical Pin Planner

o attribute chip_pin of data : signal is "D1, D2, D3, D4";

 attribute enum_encoding : string; -- for CE1911

o attribute enum_encoding of fruit : type is "gray"; -- or “johnson", “one-hot”, …

Conditions
 INPUT_OR_SIGNAL = VALUE (can omit in simple cases, e.g., s = '1')

 INPUT_OR_SIGNAL /= VALUE

 ((COND1 or not COND2) and COND3)

Combinational syntax
 Direct assignments: not, and, or, nand, nor, xor, xnor

 with S select D <= O1 when I1, [O2 when I2 | I3,] [O3 when others];
o must cover all

o The type of S/In can be bit/std_logic, string, and user types (e.g., states)

 D <= V1 when COND1 [else V2 when COND2]… [else VN];
o Caution: infers latches if not all cases clearly covered – check RTL viewer

o When-else is often good for next-state logic, which is combinational, but whose conditions vary in

structure (unconditional transitions only depend on previous state – others look at inputs)

Structural syntax
1. component DFF port (-- in architecture before begin (no “is”)

 CLK, CLRN, D, PRN: in std_logic;
 Q: out std_logic
);
 end component DFF;

2. Port map (positional and named associations) (generic map follows same pattern)

 U1: DFF port map(CLK, ‘1’, D(1), ‘1’, Q(1));
 U2: DFF port map(D=>D(2), Q=>Q(2), PRN=>‘1’, CLRN=>‘1’, CLK=>CLK);

3. LABEL: for CTR in VAL1 to|downto VAL2 generate

 CONCURRENT_STMTS

end generate LABEL;

Sequential syntax for CE1911
o process (sensitivity list)

o rising_edge

o if-else

if COND then
SEQ_STMTS

[elsif COND then
SEQ_STMTS]*

 [else SEQ_STMTS]
end if;

o case-when

case EXP is
when CHOICE1 =>

SEQ_STMTS […]
[when OTHERS => SEQ_STMTS]

end case;

