## MSOE Computer Engineering v5.0

Semester Curriculum Proposal

## Contents

- Flowchart
- Track
- Correspondences between old and new curricula
- CPE section counts by semester
- CPE sections consumed by course, semester, and area
- ABET Curriculum and Program Criteria Coverage
- ABET Student Outcome Assessment
- Robustness and Alternate Pathways
- CLO Coverage Plan
- CE General Education Framework Compliance
- Major GPA Courses


## References

- Flowchart: https://lucid.app/documents/view/939acc0f-6ef6-41cd-890c-1d0778a13669
- Most Development Materials:
\%USERPROFILE\%\Box\EECS Faculty and Staff\Program Specific\CE\Curriculum
- Collaborative Development Notes (CE faculty; request access if needed):
\%USERPROFILE\%\OneDrive\OneDrive - Milwaukee School of Engineering\CE Curriculum

MSOE CE Curriculum v5.0 for F'23+ Students

[student name]

| [date] | Student ID |
| :--- | :--- |
| CE 5.0 | Last Revision by Dr. Durant |
| Plan to complete CE degree | Curriculum Version |

Fall, 2023

| COM-1001 | College Writing | 3 | 3 |
| :--- | :--- | :--- | :--- |
| CPE-1500 | Digital Logic | 5 | 4 |
| CSC-1110 | Software Development | 5 | 4 |
| MTH-1110 | Calculus I | 4 | 4 |
| Total |  |  |  |

Fall, 2024

| CPE-2600 | Systems Programming | 5 | 4 |
| :--- | :--- | :--- | :--- |
| ELE-2001 | Electric Circuits 1: Theory and App | 5 | 4 |
| IDS-2020 | Career Development | 1 | 0 |
| MTH-2140 | Diff Eq + Matrix Algebra | 3 | 3 |
| PHY-1120 | Physics II - Electricity, Magnetism, | 5 | 4 |
| Total |  | 19 | $\mathbf{1 5}$ |

Fall, 2025

| BUS-2411 | Building Inclusive Teams | 3 | 3 |
| :--- | :--- | :--- | :--- |
| COM-3001 | Professional Presentations | 3 | 3 |
| CPE-3600 | Advanced Embedded Systems | 5 | 4 |
| ELE-3101 | Electronics 1 | 5 | 4 |
| MTH-2310 | Discrete Math | 3 | 3 |
|  |  |  |  |
| Total |  | $\mathbf{1 9}$ | $\mathbf{1 7}$ |

Fall, 2026

| CPE-4901 | Senior Design 1 | 2 | 3 |
| :--- | :--- | :--- | :--- |
| CSE-4 | Program Elective | 3 | 3 |
| ELE-3320 | Digital Signal Processing | 4 | 3 |
| HSC-4 | GenEd SE HSC (6c) | 3 | 3 |
| PHY-3700 | Physics of Electronic Materials and | 5 | 4 |
|  |  |  |  |
| Total |  | $\mathbf{1 7}$ | $\mathbf{1 6}$ |


| Spring, 2024 |  |  |  |
| :--- | :--- | :--- | :--- |
| CPE-1510 | Computer Architecture and Assembl | 5 | 4 |
| CSC-1120 | Data Structures and Graphical Interfa | 5 | 4 |
| MTH-1120 | Calculus II | 4 | 4 |
| PHY-1110 | Physics I - Mechanics \& Thermodyna। | 5 | 4 |
|  |  |  |  |
| Total |  | 19 | $\mathbf{1 6}$ |

## $36 \quad 31$

## Spring, 2025

| COM-2001 | Writing for the STEM Disciplines | 3 | 3 |
| :--- | :--- | :--- | :--- |
| CPE-2610 | Embedded Systems | 5 | 4 |
| ELE-2011 | Electric Circuits 2: Theory and Applici | 5 | 4 |
| HSC-4 | GenEd SE HSC (6c) | 3 | 3 |
| MTH-2480 | Probability and statistics | 3 | 3 |
| Total |  | $\mathbf{1 9}$ | $\mathbf{1 7}$ |

Spring, 2026

| BUS-3420 | Innovation and Entrepreneurship | 3 | 3 |
| :--- | :--- | :--- | :--- |
| CPE-3300 | Networking | 5 | 4 |
| ELE-3300 | Signals and Systems | 3 | 3 |
| HSC-4 | GenEd SE HSC (6c) | 3 | 3 |
| MTH-2340 | Linear algebra with applications | 3 | 3 |
|  |  |  | $\mathbf{1 7}$ |
| Total |  |  |  |

## Spring, 2027

| CPE-4800 | Information Security | 5 | 4 |
| :--- | :--- | :--- | :--- |
| CPE-4902 | Senior Design 2 | 2 | 3 |
| CSE-4 | Program Elective | 3 | 3 |
| EL | Free Elective | 3 | 3 |
| HSC-4 | GenEd SE HSC/MA/PH/CH (6d) | 3 | 3 |
|  |  |  | $\mathbf{1 6}$ |
| Total |  |  |  |

General Education Core Part 1, 21 credits required
ABET Math/Science, 30 required
EECS (shared) classes highlighted to help assess balance
EECS (CE only) classes highlighted to help assess balance

| Computer Engineering |  |  |  |  |  | Quarter System |  |  |  |  |  | Semester Equivalent |  |  |  | Semester Actual |  |  |  | Course \# | Course Name |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Course Number | Course Name | QF | Qw | as | ce Q | Count | Lec Hours | Lab Hours | Credits | Has Lab Ar | Area | Count | Lec Hours | Lab Hours | Credits | Count | Lec Ho Lab Hou Credits $\Delta$ Credits |  |  |  |  |
|  | Total |  |  |  |  | 55 | 168 | 48 | 192 | 24 |  | 36.7 | 112 | 32 | 128 | 37 | 111 | 36 | 128 |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1\% | -1\% | 13\% | 0\% $\leqslant \downarrow \% \Delta$ |  |  |
|  |  |  |  |  |  | 3 | 9 | 0 | 9 |  | Business | 2 | 6.0 |  | 6 | 2 | 6 | 0 | 0\% |  |  |
|  |  |  |  |  |  | 9 | 27 | 12 | 33 |  | Engineering CS | 6 | 18.0 | 8.0 | 22 | 5 | 15 | 8 | $19-14 \%$ |  |  |
|  |  |  |  |  |  | 17 | 49 | 28 | 63 |  | Engineering EC | 11.3 | 32.7 | 18.7 | 42 | 13 | 36 | 22 | 47 12\% |  |  |
|  |  |  |  |  |  | 3 | 7 | , | 7 |  | General | 2 | 4.7 |  | 4.7 | 1 | 4 | 0 | $3-36 \%$ |  |  |
|  |  |  |  |  |  | 9 | 30 | 0 | 30 |  | HSC | 6 | 20.0 |  | 20 | 7 | 21 | 0 | 21 5\% |  |  |
|  |  |  |  |  |  | 9 | 31 | 0 | 31 |  | Math | 6 | 20.7 |  | 20.7 | 6 | 20 | 0 | $20-3 \%$ |  |  |
|  |  |  |  |  |  | 5 | 15 | - | 19 |  | Physics | 3.3 | 10.0 | 5.3 | 12.7 | 3 | 9 | 6 | $12-5 \%$ |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Share |  |  |
| BA-3411 | Leading Project Teams | ${ }^{3}-0-3$ |  |  | 7 |  | 3 | 0 | 3 | FALSE ${ }^{\text {B }}$ | Business |  |  |  |  |  | 3 |  | 3 | BUS-2411 | Building Inclusive Teams |
| BA-3423 | Innovation and Business Markets |  |  | '3-0-3 | 9 |  | 3 | - 0 | 3 | FALSE ${ }^{\text {B }}$ | Business |  |  |  |  |  | 3 |  | 3 | BUS-3420 | Innovation and Entrepreneurship |
| BA-2220 | Foundations of Business Economics |  | '3-0-3 |  | 11 |  | 3 | - 0 | 3 | FALSE Bu | Business |  |  |  |  |  |  |  |  |  |  |
| CS-1011 | Software Development I | '3-2-4 |  |  | 1 |  | 3 | - 2 | 4 | TRUE En | Engineering CS |  |  |  |  |  | 3 | 2 | $4 \mathrm{CS} / \mathrm{SE}$ | CSC-1110 | Software Development |
| CS-1021 | Software Development II |  | '3-2-4 |  | 2 |  | 3 | 2 | 4 | TRUE En | Engineering CS |  |  |  |  |  | 3 | 2 | 4 CS/SE | CSC-1120 | Graphical Software and Data Structures |
| CS-2852 | Data Structures |  |  | '3-2-4 | 3 |  | 3 | 2 | 4 | TRUE En | Engineering CS |  |  |  |  |  |  |  |  |  |  |
| SE-2030 | Software Engineering Tools and Practices |  |  | '2-2-3 | 4 |  | 2 | - 2 | 3 | TRUE En | Engineering CS |  |  |  |  |  |  |  |  |  |  |
| CS-3841 | Design of Operating Systems | '3-2-4 |  |  | 7 |  | 3 | - 2 | 4 | TRUE En | Engineering CS |  |  |  |  |  | 3 | 2 | $4 \mathrm{CS} / \mathrm{SEEL}$ E | CPE-2600 | Systems Programming |
| CS-3210 | Computer Graphics |  |  | 3-2-4 | 9 |  | 3 | - 2 | 4 | TRUE En | Engineering CS |  |  |  |  |  |  |  |  |  |  |
| CE-4961 | Networking II |  | 4-0-4 |  | 11 |  | 4 | 0 | 4 | FALSE En | Engineering CS |  |  |  |  |  |  |  |  |  |  |
|  | Elective (Technical) |  | '3-0-3 |  | 11 |  | 3 | 0 | 3 | FALSE En | Engineering CS |  |  |  |  |  | 3 | 0 | 3 | CSE-4 | Program Elective |
| CS-4920 | Information Security |  |  | '3-0-3 | 12 |  | 3 | - 0 | 3 | FALSE En | Engineering CS |  |  |  |  |  | 3 | 2 | $4 \mathrm{CS} / \mathrm{SEEL}$ | CPE-4800 | Information Security |
| CE-1901 | Digital Logic I | 3-2-4 |  |  | 1 |  | 3 | - 2 | 4 | TRUE En | Engineering EC |  |  |  |  |  | 3 | 2 | 4 | CPE-1500 | Digital Logic |
| CE-1911 | Digital Logic II |  | 3-2-4 |  | 2 |  | 3 | - 2 | 4 | TRUE En | Engineering EC |  |  |  |  |  |  |  |  |  |  |
| CE-1921 | Computer Architecture |  |  | '3-2-4 | 3 |  | 3 | 2 | 4 | TRUE En | Engineering EC |  |  |  |  |  | 3 | 2 | 4 | CPE-1510 | Computer Architecture and Assembly Language |
| CE-2801 | Embedded Systems 1 | 3-2-4 |  |  | 4 |  | 3 | 2 | 4 | TRUE En | Engineering EC |  |  |  |  |  | 3 | 2 | 4 | CPE-3610 | Embedded Systems |
| EE-2050 | Linear Circuits- Steady State I | 3-2-4 |  |  | 4 |  | 3 | 2 | 4 | TRUE En | Engineering EC |  |  |  |  |  | 3 | 2 | 4 EE | ELE-2001 | Circuits 1 |
| CE-2812 | Embedded Systems II |  | 3-2-4 |  | 5 |  | 3 | 2 | 4 | TRUE En | Engineering EC |  |  |  |  |  | 3 | 2 | 4 | CPE-3600 | Advanced Embedded Systems |
| EE-2060 | Linear Circuits - Steady State II |  | 3-2-4 |  | 5 |  | 3 | - 2 | 4 | TRUE En | Engineering EC |  |  |  |  |  | 3 | 2 | 4 EE | ELE-2011 | Circuits 2 |
| CE-2820 | Embedded Systems III |  |  | '3-2-4 | 6 |  | 3 | - 2 | 4 | TRUE En | Engineering EC |  |  |  |  |  |  |  |  |  |  |
| EE-2070 | Linear Circuits - Transients |  |  | 3-0-3 | 6 |  | 3 | - 0 | 3 | FALSE En | Engineering EC |  |  |  |  |  |  |  |  |  |  |
| EE-3032 | Signals and Systems | 4-0-4 |  |  | 7 |  | 4 | - 0 | 4 | FALSE En | Engineering EC |  |  |  |  |  | 3 | 0 | 3 EE | ELE-3300 | Signals |
| EE-3221 | Digital Signal Processing |  | '3-2-4 |  | 8 |  | 3 | 2 | 4 | TRUE En | Engineering EC |  |  |  |  |  | 2 | 2 | 3 EE | ELE-3320 | DSP |
| CE-3101 | Digital Electronic Interfacing |  |  | 3-2-4 | 9 |  | 3 | 2 | 4 | TRUE En | Engineering EC |  |  |  |  |  | 3 | 2 | 4 EE | ELE-3101 | Electronics 1 |
| CE-4000 | Senior Design Project I | '2-2-3 |  |  | 10 |  | 2 | 2 | 3 | TRUE En | Engineering EC |  |  |  |  |  | 2 | 2 | 3 | CPE-4901 | Senior Design 1 |
| CE-4951 | Networking 1 | 3-2-4 |  |  | 10 |  | 3 | - 2 | 4 | TRUE En | Engineering EC |  |  |  |  |  | 3 | 2 | 4 | CPE-3300 | Networking |
|  | Elective (Technical) | '3-0-3 |  |  | 10 |  | 3 | - 0 | 3 | FALSE En | Engineering EC |  |  |  |  |  | 3 | 0 | 3 | CSE-4 | Technical Elective |
| CE-4010 | Senior Design Project II |  | '2-2-3 |  | 11 |  | 2 | 2 | 3 | TRUE En | Engineering EC |  |  |  |  |  | 2 | 2 | 3 | CPE-4902 | Senior Design II |
| CE-4020 | Senior Design Project III |  |  | '2-2-3 | 12 |  | 2 | 2 | 3 | TRUE En | Engineering EC |  |  |  |  |  |  |  |  |  |  |
| OR-402 | Professional Guidance |  | 1-0-1 |  | 8 |  | 1 | 0 | 1 | FALSE 6 | General |  |  |  |  |  | 1 | 0 | $0 \mathrm{cs} / \mathrm{SE} / .$. | IDS-2020 | Career Development |
|  | Elective (Free) |  | '3-0-3 |  | 8 |  | 3 | 0 | 3 | FALSE 6 | General |  |  |  |  |  | 3 | 0 | 3 |  | Elective (free) |
|  | Elective (Free) |  |  | ${ }^{3}-0-3$ | 12 |  | 3 | - 0 | 3 | FALSE 6 | General |  |  |  |  |  |  |  |  |  |  |
| GS-1001 | Freshman Studies 1 | 4-0-4 |  |  | 1 |  | 4 | - 0 | 4 | FALSE HS | HSC |  |  |  |  |  | 3 |  | 3 | Сом-1001 | College Writing |
| GS-1002 | Freshman Studies II |  | 4-0-4 |  | 2 |  | 4 | - 0 | 4 | FALSE HS | HSC |  |  |  |  |  | 3 |  | 3 | COM-2001 | STEM Writing |
| GS-1003 | Freshman Studies III |  |  | 4-0-4 | 3 |  | 4 | 0 | 4 | FALSE HSC | HSC |  |  |  |  |  | 3 |  | 3 | Сом-3001 | Presentations |
| HU-432 | Ethics for Professional Managers and Engineers |  |  | '3-0-3 | 9 |  | 3 | 0 | 3 | FALSE HS | HSC |  |  |  |  |  | 3 |  | 3 | HSC-4 | Elective per GenEd 6d |
|  | Elective (HU/SS) | '3-0-3 |  |  | 10 |  | 3 | -0 | 3 | FALSE HS | HSC |  |  |  |  |  | 3 |  | 3 | HSC-4 | Elective per GenEd dc1 |
|  | Elective (HU/SS) | '3-0-3 |  |  | 10 |  | 3 | - 0 | 3 | FALSE HSC | HSC |  |  |  |  |  | 3 |  | 3 | HSC-4 | Elective per GenEd 6 c2 |
|  | Elective (HU/SS) |  | '3-0-3 |  | 11 |  | 3 | - 0 | 3 | FALSE HS | Hsc |  |  |  |  |  | 3 |  | 3 | HSC-4 | Elective per GenEd 6 c 3 |
|  | Elective (HU/SS) |  |  | '3-0-3 | 12 |  | 3 | 0 | 3 | FALSE HSC | HSC |  |  |  |  |  |  |  |  |  |  |
|  | Elective (HU/SS) |  |  | '3-0-3 | 12 |  | 3 | - | 3 | FALSE HSC | HSC |  |  |  |  |  |  |  |  |  |  |
| MA-136 | Calculus for Engineers | 4-0-4 |  |  | 1 |  | 4 | - 0 | 4 | FALSE M | Math |  |  |  |  |  | 4 |  | 4 | мTH-1110 | Calculus 1 |
| MA-137 | Calculus for Engineers II |  | 4-0-4 |  | 2 |  | 4 | - 0 | 4 | FALSE M | Math |  |  |  |  |  | 4 |  | 4 | мTH-1120 | Calculus II |
| MA-2314 | Calculus for Engineers III |  |  | 4-0-4 | 3 |  | 4 | 0 | 4 | FALSE $M$ | Math |  |  |  |  |  | 0 |  |  |  | (Calculus III not required for CE on semesters) |
| MA-235 | Differential Equations for Engineers | 4-0-4 |  |  | 4 |  | 4 | 0 | 4 | FALSE M | Math |  |  |  |  |  | 3 |  | 3 | MTH-2140 | Diff Eq + Matrix Algebra |
| MA-2323 | Calculus for Engineers IV |  | '3-0-3 |  | 5 |  | 3 | - 0 | 3 | FALSE M | Math |  |  |  |  |  | 3 |  | 3 | MTH-2480 | Probability and stats |
| MA-262 | Probability and Statistics |  |  | ${ }^{3}-0-3$ | 6 |  | 3 | -0 | 3 | FALSE M | Math |  |  |  |  |  |  |  |  |  |  |
| MA-2310 | Discrete Mathematics 1 | '3-0-3 |  |  | 7 |  | 3 | 0 | 3 | FALSE M | Math |  |  |  |  |  | 3 |  | 3 | MTH-2310 | Discrete Math |
| MA-383 | Linear Algebra |  | '3-0-3 |  | 8 |  | 3 | 0 | 3 | FALSE $M$ | Math |  |  |  |  |  | 3 |  | 3 | MTH-2340 | Linear algebra |
|  | Elective (Math/Science) |  |  | ${ }^{3}-0-3$ | 9 |  | 3 | - 0 | 3 | FALSE M | Math |  |  |  |  |  |  |  |  |  |  |
| PH-2011 | Physics 1-Mechanics | 3-2-4 |  |  | 4 |  | 3 | - 2 | 4 | TRUE Ph | Physics |  |  |  |  |  | 3 | 2 | 4 | PHY-1110 | Physics I- Mechanics and Thermodynamics |
| PH-2021 | Physics II- Electromagnetism and Optics |  | 3-2-4 |  | 5 |  | 3 | 2 | 4 | TRUE Ph | Physics |  |  |  |  |  | 3 | 2 | 4 | PHY-1120 | Physics II - Electricity, Magnetism, and Optics |
| PH-2031 | Physics III - Thermodynamics and Quantum Physics |  |  | 3-2-4 | 6 |  | 3 | 2 | 4 | TRUE Ph | Physics |  |  |  |  |  |  |  |  |  |  |
|  | Elective (Science) | '3-0-3 |  |  | 7 |  | 3 | 0 | 3 | FALSE Ph | Physics |  |  |  |  |  |  |  |  |  |  |
| PH-3600 | Physics of Semiconductor Materials and Devices |  | 3-2-4 |  | 8 |  | 3 | 2 | 4 | TRUE Ph | Physics |  |  |  |  |  | 3 | 2 | 4 | PHY-3700 | Semiconductors |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $21$ |  | GenEd Core 21 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $32$ |  | GenEd M/S 30 |


| Proposer / Coordinator |  |
| :---: | :---: |
| Meier | CPE 1500 Digital Logic |
| Meier | CPE 1510 Computer Architecture and Assembly Language |
| Lembke | CPE 2600 Systems Programming |
| Livingston | CPE 2610 Embedded Systems |
| Livingston | CPE 3600 Advanced Embedded Systems |
| Rothe | CPE 3300 Networking |
| Durant | CPE 490x Senior Design I / II |
| Durant | CPE 4800 Information Security |
|  | CSE 4xxx Program Elective |


| Track | Fall |  |  | Spring |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CE EE $\Delta$ | Sections | Students | CE EE | Sections | Students | CE EE |
| 121 | 3 | 58 | 508 | 4 | 76 | 670 |
| 2 | 0 | 0 |  | 3 | 56 | 56 |
| 3 | 3 | 43 | 43 | 0 | 0 |  |
| 4 | 0 | 0 |  | 3 | 43 | 43 |
| 5 | 2 | 37 | 37 | 0 | 0 |  |
| 6 | 0 | 0 |  | 2 | 37 | 37 |
| 7-8 | 2 | 37 | 37 | 2 | 37 | 37 |
| 8 | 0 | 0 |  | 2 | 37 | 37 |
| 7-8 var | 2 | 37 | 37 | 2 | 37 | 37 |
|  | 12 | 212 |  | 18 | 323 |  |

Class Size
20
20
20
20
20
20
20
20
20

Assumptions

| Student estimates |  |  |  |
| :---: | ---: | ---: | ---: |
| Students Retention Fail rates |  |  |  |
| CE1 | 50 | 0.8 | 0.12 |
| CE2 | 40 | 0.9 | 0.07 |
| CE3 | 36 | 1 | 0.04 |
| CE4 | 36 |  | 0.02 |
|  |  |  |  |
| EE1 | 70 | 0.8 | 0.12 |
| EE2 | 56 | 0.9 | 0.07 |
| EE3 | 50 | 1 | 0.04 |
| EE4 | 50 |  | 0.02 |


| Section Size |  |
| :---: | ---: |
| Lab | 20 |
| Lec | 27 |



## ABET Curriculum and Program Criteria Coverage

## Criterion 5 (Curriculum)

The Curriculum criterion for the Engineering Accreditation Commission of ABET requires the following:
The curriculum requirements specify subject areas appropriate to engineering but do not prescribe specific courses. The program curriculum must provide adequate content for each area, consistent with the student outcomes and program educational objectives, to ensure that students are prepared to enter the practice of engineering. The curriculum must include:

- a. a minimum of 30 semester credit hours (or equivalent) of a combination of college-level mathematics and basic sciences with experimental experience appropriate to the program.
- b. a minimum of 45 semester credit hours (or equivalent) of engineering topics appropriate to the program, consisting of engineering and computer sciences and engineering design, and utilizing modern engineering tools.
- c. a broad education component that complements the technical content of the curriculum and is consistent with the program educational objectives.
- d. a culminating major engineering design experience that 1) incorporates appropriate engineering standards and multiple constraints, and 2) is based on the knowledge and skills acquired in earlier course work.

The curriculum meets the requirements as follows:

- a. The program has 32 Math/Science credit hours.
- b. The program has 66 Engineering credit hours.
- c. The broad education component complements the technical content and is consistent with the PEOs.
- d. The two-semester senior design project meets the requirements described above.


## Program Criteria

The Computer Engineering program criteria for $A B E T$ requires:
The structure of the curriculum must provide both breadth and depth across the range of engineering topics implied by the title of the program.

The curriculum must include probability and statistics, including applications appropriate to the program name; mathematics through differential and integral calculus; sciences (defined as biological, chemical,
or physical science); and engineering topics (including computing science) necessary to analyze and design complex electrical and electronic devices, software, and systems containing hardware and software components.

The curriculum for programs containing the modifier "computer" in the title must include discrete mathematics.

Breaking this down, the topics listed are covered in the following courses:

- probability and statistics, including applications appropriate to the program name
- MTH2480
- CPE1510 Computer Architecture and Assembly Language
- CPE3300 Networking
- mathematics through differential and integral calculus
- 6 required math. classes covering these topics and more
- sciences (defined as biological, chemical, or physical science); and engineering topics (including computing science) necessary to analyze and design complex electrical and electronic devices, software, and systems containing hardware and software components
- a year of college physics
- PH3700 Semiconductor Physics
- discrete mathematics: MTH2310


## ABET Student Outcome Assessment

The program makes use of several targeted assessments to assess and evaluate the extent to which student attain the seven student outcomes.

## Breakdown By Outcome

- SO1 an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
- CPE2600 (fall) - TBD
- CPE2610 (spring) - final exam problem TBD
- SO2 an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
- CPE4902 (spring) - evaluate design artifacts in final senior design report, tie back to original requirements and specifications - this should be significant as it is the only targeted assessment for this outcome
- SO3 an ability to communicate effectively with a range of audiences
- CPE3300 (spring) - written, evaluate formal lab report
- CPE4901 (fall) - oral, senior design presentations
- SO4 an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
- CPE4800 (spring) - exam question about a data breach case study - identify what malpractices led to the breach
- CPE4901 (fall) - evaluate project proposal, requirements, and specifications
- SO5 an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
- CPE3300 (spring) - instructor evaluation
- CPE4901 (fall) - instructor evaluation
- SO6 an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
- CPE4902 (spring) - test plan evaluation, results analysis
- CPE3600 (fall) - test plan evaluation, results analysis
- SO7 an ability to acquire and apply new knowledge as needed, using appropriate learning strategies
- CPE3600 (fall) - evaluate implementation of previously unknown subsystem
- CPE4902 (spring) - instructor evaluation of team performance through iterative development sprints


## Breakdown By Course

## Fall

- CPE2600 - SO1
- CPE3600 - SO6, SO7
- CPE4901 - SO3, SO5


## Spring

- CPE2610 - SO1
- CPE3300 - SO3, SO5
- CPE4902 - SO2, SO4, SO6, SO7
- CPE4800 - SO4


## Robustness and Alternate Pathways

## Robustness to Delays

Not passing CPE2600 in S3 moves CPE2610 to S6, which moves CPE3300 to S8. Not passing CPE2610 in S4 also moves CPE3300 to S8.

The curriculum is reasonably robust to mathematics delays. Students for whom precalculus is recommended will continue to receive credit for the free elective. The curriculum can handle a 1semester delay in mathematics (from precalculus being required or from failing one class). A 2semester delay causes ELE2011 to be delayed 1 semester. The ELE courses will be offered every semester, reducing many delays to only 1 semester. However, if a student delays MTH2480 for 2 semesters, it moves CPE3300 to S8.

## Significant AP or Transfer Credit

For students who enter with sufficient AP or transfer credit in mathematics, the sciences, and arts and letters, 3-year plans remain viable. Critical paths:

- CSC1110 S1; CPE2600 S3; CPE2610 S4; CPE3600 S5; CPE3300/4800 S6
- ELE2001 S1; ELE2011 S2; ELE3101/3300 S3; ELE3320 S4

Thus, the first software development course remains a critical prerequisite for accelerated students.

## EEX

Analysis of keeping the EEX pathway to CE is ongoing. It it will require 2.5 years at MSOE in most cases. Three years will be required for students who have no or virtually no programming experience.

After completing the EEX digital/programming bridge course, students would:

- Still need to take CSC-1110 Software Development at MSOE if they did not also transfer it in, perhaps via an "in lieu" course at their first institution
- Not need to take CPE-1500 Digital the shared CE/EE digital logic course since it would be covered by the digital/programming bridge course
- Still need to take CPE-2600 Systems Programming.

In many cases students will have had a C course with sufficient material to start in CPE-2600 their first term (even if they don't have a CSC-1110 equivalent), taking it in parallel with the digital
logic/programming bridge course. They could then take CPE-2610 in S2, CPE-3600 in S3 and CPE-3300 in S 4 .

If a student had neither CSC-1110 credit or a sufficient introductory programming course, in S1 at MSOE they would take the digital logic/programming bridge course and CSC-1110. Then, in S3 they would take CPE-2600 (fall only) Systems Programming, moving on to CPE-2610 Embedded in S4. This means CPE-3600 Advanced Embedded Systems (fall only) would be in S5 and CPE-3300 Networking (spring only) would be in S6.

## Czech Exchange

Spring of the second or third year remains viable for participating in the Czech exchange, with spring of the third year being preferred purely from a curriculum point of view. CAECM confirms that they will continue to send students in spring (sophomore year), which will allow us to continue to coordinate many aspects of the program across CAECM and EECS.

- Students usually take courses that transfer back as 1 or 2 semester courses in signals, DSP, or networking, aligning well with the third year CE curriculum.
- Students are required to take courses in Czech Language and Czech Culture, which meet a humanities and a social science selected elective on the quarter system.
- HSC anticipates that Czech Language will fulfil a 6 c requirement for "Exhibit Curiosity"
- It is not yet known if Czech Culture will fulfil a 6c or 6d requirement.


## CLO Coverage Plan

The MSOE document "General Education Considerations and Credit Distributions" the my.msoe.edu semester conversion portal (undated, downloaded 2021-09-20) states as its final point, "7. The academic programs shall provide learning experiences that address and assess all Common Learning Outcomes. Unless otherwise approved, these assessments are administered in courses offered by the academic programs. The programs may use the common assessment tools or utilize program assessments that align with Common Learning Outcomes."

The CE program assesses these CLOs addressed in various ways:

- Through a required class in another department developed in collaboration with that department
- Through mapping from Student Outcomes that are assessed as part of our ABET assessment. (SOn)
- Using a customized AAC\&U VALUE rubric as recommended by the MSOE General Education Committee, perhaps with program-specific modifications. (CLOn)

Specifically, for the 7 CLOs:

1. Communicate Effectively: Articulate and explain complex ideas clearly across a range of media and audiences

- CPE4901 - SO3. an ability to communicate effectively with a range of audiences

2. Collaborate Successfully: Work constructively with others towards a common goal

- BUS2411 Building Inclusive Teams

3. Integrate Learning: Synthesize and transfer learning across new contexts to address complex problems

- CPE3600 - SO6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
- CPE4902 - SO2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors

4. Demonstrate Ethical Understanding: Engage in independent ethical inquiry on pressing ethical challenges and foster ethical behavior in personal and professional life

- CPE4902 - SO4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts

5. Think Critically: Apply sound principles of critical or analytical reasoning and evaluation of evidence

- CPE3600 - CLO5

6. Exhibit Curiosity: Practice open-minded intellectual inquiry, creative exploration, and engagement with different perspectives

- BUS3420 Innovation and Entrepreneurship

7. Embrace Diversity: Demonstrate inclusivity toward others, pursuing intercultural understanding and exploring ways to address historical or existing barriers to social equity

- BUS2411 Building Inclusive Teams

We note that when we assess a CLO in the senior project, we have aligned the semester with CS and SE if they also assess that CLO in the senior project. The goal is to have each advisor do one type of assessment, segregating students by major, as always. To support that, many of the more specific CS/SE assessments of the same ABET SO / MSOE CLO could be used by advisors primarily advising students in those majors and would be accepted by the CE program as substitutes for the assessments above.

## Distribution Across Courses

- BUS2411 (fall) - CLO2, CLO7
- BUS3420 (spring) - CLO6
- CPE3600 (fall) - CLO3, CLO5
- CPE4901 (fall) - CLO1
- CPE4902 (spring) - CLO3, CLO4

Note (10/28/2021): Dr. Domack confirmed that the courses designated as meeting 6e will automatically be used to assess CLO3. Thus, CE may decide to revise its proposal to move 6 e assessment to CPE4902 if we decide to do it in only 1 semester of senior design.

## Reference: Accepted and Current as of 10/28/2021

## CS

- CSC4901 - CLO1
- CSC4902 - CLO3


## EE

- ELE4902 (both semesters, but spring is larger) - CLO3


## SE

- SWE4901 - CLO1, CLO5, CLO6
- SWE4902 - CLO3, CLO4


## CE General Education Framework Compliance

Point 6 of the General Education Framework defines the General Education program as:
The General Education program shall be represented in every year of the curriculum and consist of 30 credit hours which are distributed as follows:

- a. 9 credit hours of foundational knowledge in communication (three 3 credit hours courses) to demonstrate an ability to communicate effectively and collaborate successfully. Unless otherwise approved, these courses are offered by the Humanities, Social Science and Communication department.
- b. 3 credit hours of foundational knowledge in sciences and mathematics to demonstrate an ability to think critically. Unless otherwise approved, these courses are offered by the Mathematics or Physics \& Chemistry departments.
- c. 9 credit hours of foundational knowledge in the humanities and social sciences (three 3 credit hour courses, one for each area) to demonstrate an ability to exhibit curiosity, embrace diversity, and demonstrate ethical understanding. At least 6 of these credits must be student-selected electives. Unless otherwise approved, these courses are offered by the Humanities, Social Science and Communication department.
- d. 3 credit hours of foundational knowledge in the humanities, sciences, mathematics, social sciences and arts to demonstrate an ability to collaborate successfully, think critically, demonstrate ethical understanding, exhibit curiosity, or embrace diversity. These 3 credits must be a student-selected elective. Unless otherwise approved, these courses are offered by the Humanities, Social Science and Communication, Mathematics, or Physics \& Chemistry departments.
- e. 6 credit hours of integrated project-based experiential learning to demonstrate an ability to integrate learning. Unless otherwise approved, these courses are offered by the academic programs.

Here is how the program meets these requirements:

- a. COM1001 (year 1), COM2001 (year 2), and COM3001 (year 3) are required.
- b. MTH2310 Discrete Mathematics (year 3) meets this requirement.
- c. The program requires 9 credit hours of foundational knowledge in the humanities and social sciences (three 3-credit courses) designated as $6 c N$ on the flowchart. These credits are scheduled in years 2 and 3. The exhibit curiosity, embrace diversity, and demonstrate ethical understanding CLOs must each be addressed and assessed in at least one of these courses.
- d. The program requires a 3-credit general education selected elective designated $6 d$ on the flowchart in spring of the final year. Students will be able to choose from electives that are designated by MSOE to meet the definition of 6 d above.
- e. The program requires 6 credit hours of integrated project-based experiential learning through its two-semester senior design project.
- CPE4902 will provide 3 of these credits.
- CPE3600 will provide 3 of these credits. For 3 of the course's 4 credits, "the primary objective of the course [must be] for students to work on the project" (2021-05-10 Integrative Learning Requirements). Thus, at least $38 \%$ of the student's grade will be determined by the integrated project.
- Dr. Domack confirmed on 10/28/2021 that the courses designated as meeting 6 e will automatically be used to assess CLO3.


## Major GPA Courses

The following courses will be included in the Major GPA calculation: all CPE, CSC, CSE, ELE, and SWE prefixed courses.

